Spaces:
Sleeping
Sleeping
# app.py | |
import gradio as gr | |
import pandas as pd | |
import joblib | |
# Load pre-trained model and dataset | |
data = pd.read_csv('Iris.csv') | |
data.drop(columns=['Id'], inplace=True) | |
# Load the saved model | |
model = joblib.load('best_random_forest_model.pkl') | |
def classify_iris(sepal_length, sepal_width, petal_length, petal_width): | |
"""Classify iris species based on input features.""" | |
input_features = [[sepal_length, sepal_width, petal_length, petal_width]] | |
prediction = model.predict(input_features)[0] | |
return prediction | |
# Define the Gradio interface | |
inputs = [ | |
gr.Number(label="Sepal Length (cm)"), | |
gr.Number(label="Sepal Width (cm)"), | |
gr.Number(label="Petal Length (cm)"), | |
gr.Number(label="Petal Width (cm)") | |
] | |
outputs = gr.Textbox(label="Predicted Iris Species") | |
description = "This app classifies iris species (Setosa, Versicolor, Virginica) based on the given features." | |
gr.Interface(fn=classify_iris, inputs=inputs, outputs=outputs, title="Iris Species Classifier", description=description).launch() | |