import streamlit as st from dotenv import load_dotenv from PyPDF2 import PdfReader from langchain.text_splitter import CharacterTextSplitter from langchain_huggingface import HuggingFaceEmbeddings, HuggingFacePipeline from langchain_community.vectorstores import FAISS from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain from transformers import pipeline # Hugging Face pipeline for using T5 model # Access Hugging Face API token from Streamlit secrets # Function to get text from the PDF documents def get_pdf_text(pdf_docs): text = "" for pdf in pdf_docs: pdf_reader = PdfReader(pdf) for page in pdf_reader.pages: text += page.extract_text() return text # Function to split the text into manageable chunks def get_text_chunks(text): text_splitter = CharacterTextSplitter( separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len ) chunks = text_splitter.split_text(text) return chunks # Function to create vectorstore from the text chunks def get_vectorstore(text_chunks): embeddings = HuggingFaceEmbeddings(model_name="hkunlp/instructor-base") # Using lightweight instructor model vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) return vectorstore # Function to create the conversation chain using a smaller model def get_conversation_chain(vectorstore): # Use HuggingFacePipeline with a smaller model like `t5-small` t5_model = pipeline( "text2text-generation", model="google/flan-t5-base", # Smaller model for low-end systems tokenizer="google/flan-t5-base", max_new_tokens=256, # Increase the maximum token output temperature=0.7, # Control creativity top_p=0.9, # Nucleus sampling top_k=50, # Automatically fetches the token from Streamlit secrets ) llm = HuggingFacePipeline(pipeline=t5_model) memory = ConversationBufferMemory( memory_key="chat_history", return_messages=True ) # Create a conversation chain using the T5 model conversation_chain = ConversationalRetrievalChain.from_llm( llm=llm, retriever=vectorstore.as_retriever(), memory=memory, ) return conversation_chain # Function to handle the user input def handle_userinput(user_question): response = st.session_state.conversation({'question': user_question}) st.session_state.chat_history = response['chat_history'] # Display the conversation (alternating user and bot messages) for i, message in enumerate(st.session_state.chat_history): if i % 2 == 0: st.write(f"**You:** {message.content}", unsafe_allow_html=True) else: st.write(f"**Bot:** {message.content}", unsafe_allow_html=True) def main(): load_dotenv() st.set_page_config(page_title="Chat with multiple PDFs", page_icon=":books:") # Initialize session state for conversation if "conversation" not in st.session_state: st.session_state.conversation = None if "chat_history" not in st.session_state: st.session_state.chat_history = None # Title of the app st.header("Chat with multiple PDFs :books:") # User input for querying the documents user_question = st.text_input("Ask a question about your documents:") if user_question: handle_userinput(user_question) with st.sidebar: st.subheader("Your documents") # File uploader to upload PDFs pdf_docs = st.file_uploader("Upload your PDFs here and click on 'Process'", accept_multiple_files=True) if st.button("Process"): with st.spinner("Processing..."): # Extract text from PDFs raw_text = get_pdf_text(pdf_docs) # Split the text into chunks text_chunks = get_text_chunks(raw_text) # Create a vector store using the text chunks vectorstore = get_vectorstore(text_chunks) # Create the conversation chain using the T5 model st.session_state.conversation = get_conversation_chain(vectorstore) if __name__ == '__main__': main()