ChatPdfs / app.py
PebinAPJ's picture
Update app.py
c7e2211 verified
import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain_huggingface import HuggingFaceEmbeddings, HuggingFacePipeline
from langchain_community.vectorstores import FAISS
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from transformers import pipeline # Hugging Face pipeline for using T5 model
# Access Hugging Face API token from Streamlit secrets
# Function to get text from the PDF documents
def get_pdf_text(pdf_docs):
text = ""
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text()
return text
# Function to split the text into manageable chunks
def get_text_chunks(text):
text_splitter = CharacterTextSplitter(
separator="\n",
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
chunks = text_splitter.split_text(text)
return chunks
# Function to create vectorstore from the text chunks
def get_vectorstore(text_chunks):
embeddings = HuggingFaceEmbeddings(model_name="hkunlp/instructor-base") # Using lightweight instructor model
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
return vectorstore
# Function to create the conversation chain using a smaller model
def get_conversation_chain(vectorstore):
# Use HuggingFacePipeline with a smaller model like `t5-small`
t5_model = pipeline(
"text2text-generation",
model="google/flan-t5-base", # Smaller model for low-end systems
tokenizer="google/flan-t5-base",
max_new_tokens=512, # Increase the maximum token output
temperature=0.9,# Control creativity
#do_sample=True,
top_p=0.9, # Nucleus sampling
top_k=50,
# Automatically fetches the token from Streamlit secrets
)
llm = HuggingFacePipeline(pipeline=t5_model)
memory = ConversationBufferMemory(
memory_key="chat_history", return_messages=True
)
# Create a conversation chain using the T5 model
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vectorstore.as_retriever(),
memory=memory,
)
return conversation_chain
# Function to handle the user input
def handle_userinput(user_question):
response = st.session_state.conversation({'question': user_question})
st.session_state.chat_history = response['chat_history']
# Display the conversation (alternating user and bot messages)
for i, message in enumerate(st.session_state.chat_history):
if i % 2 == 0:
st.write(f"**You:** {message.content}", unsafe_allow_html=True)
else:
st.write(f"**Bot:** {message.content}", unsafe_allow_html=True)
def main():
load_dotenv()
st.set_page_config(page_title="Chat with multiple PDFs", page_icon=":books:")
# Initialize session state for conversation
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
# Title of the app
st.header("Chat with multiple PDFs :books:")
# User input for querying the documents
user_question = st.text_input("Ask a question about your documents:")
if user_question:
handle_userinput(user_question)
with st.sidebar:
st.subheader("Your documents")
# File uploader to upload PDFs
pdf_docs = st.file_uploader("Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
if st.button("Process"):
with st.spinner("Processing..."):
# Extract text from PDFs
raw_text = get_pdf_text(pdf_docs)
# Split the text into chunks
text_chunks = get_text_chunks(raw_text)
# Create a vector store using the text chunks
vectorstore = get_vectorstore(text_chunks)
# Create the conversation chain using the T5 model
st.session_state.conversation = get_conversation_chain(vectorstore)
if __name__ == '__main__':
main()