MotiMeter / live_session.py
Jiaaaaaaax's picture
Update live_session.py
7ec11b6 verified
import streamlit as st
from audio_recorder_streamlit import audio_recorder
import time
import google.generativeai as genai
from datetime import datetime
import json
from prompts import REAL_TIME_ANALYSIS_PROMPT, MI_SYSTEM_PROMPT
def show_live_session():
st.title("Live Therapy Session Recording & Analysis")
# Initialize session state
if "recording" not in st.session_state:
st.session_state.recording = False
if "session_transcript" not in st.session_state:
st.session_state.session_transcript = []
if "session_start_time" not in st.session_state:
st.session_state.session_start_time = None
# Layout
col1, col2 = st.columns([2, 3])
with col1:
show_recording_controls()
show_session_info()
with col2:
show_real_time_analysis()
def show_recording_controls():
st.subheader("Recording Controls")
# Start/Stop Recording button
if st.button("Start Recording" if not st.session_state.recording else "Stop Recording"):
if not st.session_state.recording:
start_session()
else:
end_session()
# Recording indicator
if st.session_state.recording:
st.markdown("🔴 **Recording in progress...**")
# Audio recorder
audio_bytes = audio_recorder()
if audio_bytes:
st.audio(audio_bytes, format="audio/wav")
process_audio(audio_bytes)
def start_session():
st.session_state.recording = True
st.session_state.session_start_time = datetime.now()
st.session_state.session_transcript = []
def end_session():
st.session_state.recording = False
save_session()
def show_session_info():
if st.session_state.recording and st.session_state.session_start_time:
duration = datetime.now() - st.session_state.session_start_time
st.info(f"Session Duration: {str(duration).split('.')[0]}")
def show_real_time_analysis():
st.subheader("Real-time Analysis")
# Display transcript and analysis
for entry in st.session_state.session_transcript:
with st.expander(f"Entry at {entry['timestamp']}"):
st.markdown(f"**Speaker:** {entry['speaker']}")
st.markdown(entry['text'])
if 'analysis' in entry:
st.markdown("### Analysis")
st.markdown(entry['analysis'])
def process_audio(audio_bytes):
"""Process recorded audio"""
try:
# Here you would typically:
# 1. Convert audio_bytes to text using a speech-to-text service
# 2. Analyze the text using Gemini
# For now, we'll use a placeholder text
transcript = "Example transcription" # Replace with actual transcription
# Add to session transcript
entry = {
"speaker": "Client",
"text": transcript,
"timestamp": datetime.now().strftime("%H:%M:%S")
}
# Generate analysis
analysis = analyze_real_time(transcript)
if analysis:
entry["analysis"] = analysis
st.session_state.session_transcript.append(entry)
except Exception as e:
st.error(f"Error processing audio: {str(e)}")
def analyze_real_time(transcript):
try:
# Configure Gemini model
model = genai.GenerativeModel('gemini-pro')
# Prepare context
context = {
"transcript": transcript,
"session_history": str(st.session_state.session_transcript[-5:]), # Last 5 entries
"timestamp": datetime.now().strftime("%H:%M:%S")
}
# Generate analysis
prompt = f"""
Analyze the following therapy session segment using MI principles:
Transcript: {context['transcript']}
Recent Context: {context['session_history']}
Please provide:
1. Identification of MI techniques used or missed opportunities
2. Analysis of change talk vs sustain talk
3. Suggestions for next interventions
4. Overall MI adherence assessment
"""
response = model.generate_content(prompt)
return response.text
except Exception as e:
st.error(f"Error generating analysis: {str(e)}")
return None
def save_session():
"""Save session data to file"""
if st.session_state.session_transcript:
try:
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"session_{timestamp}.json"
session_data = {
"start_time": st.session_state.session_start_time.isoformat(),
"end_time": datetime.now().isoformat(),
"transcript": st.session_state.session_transcript
}
with open(filename, "w") as f:
json.dump(session_data, f, indent=4)
st.success(f"Session saved to {filename}")
except Exception as e:
st.error(f"Error saving session: {str(e)}")
# Add session controls
def show_session_controls():
st.sidebar.subheader("Session Controls")
# Session settings
st.sidebar.text_input("Client ID (optional)")
st.sidebar.text_input("Session Notes (optional)")
# Timer controls
if st.session_state.recording:
if st.sidebar.button("Add Marker"):
add_session_marker()
def add_session_marker():
"""Add a marker/note to the session transcript"""
marker_text = st.text_input("Marker note:")
if marker_text:
st.session_state.session_transcript.append({
"speaker": "System",
"text": f"MARKER: {marker_text}",
"timestamp": datetime.now().strftime("%H:%M:%S")
})
# Add visualization features
def show_session_visualizations():
if st.session_state.session_transcript:
st.subheader("Session Analytics")
# Add visualizations here (e.g., using plotly)
# - Speaking time distribution
# - Change talk vs sustain talk ratio
# - MI adherence scores
pass
def show_live_session_main():
show_live_session()
show_session_controls()
show_session_visualizations()