Spaces:
Sleeping
Sleeping
File size: 41,075 Bytes
b34b702 55e9f92 184c6e4 b34b702 baeff27 b34b702 baeff27 b34b702 baeff27 b34b702 baeff27 b34b702 baeff27 b34b702 baeff27 b34b702 baeff27 b34b702 baeff27 184c6e4 daf586d 184c6e4 daf586d 184c6e4 daf586d 184c6e4 daf586d b190eed daf586d b190eed daf586d 184c6e4 b190eed 184c6e4 b190eed 184c6e4 baeff27 82ec579 55e9f92 82ec579 55e9f92 82ec579 55e9f92 baeff27 55e9f92 baeff27 55e9f92 baeff27 55e9f92 82ec579 baeff27 b190eed baeff27 b190eed baeff27 b190eed baeff27 82ec579 baeff27 82ec579 baeff27 7d996ca baeff27 7d996ca baeff27 7d996ca baeff27 7d996ca baeff27 7d996ca baeff27 7d996ca baeff27 7d996ca baeff27 55e9f92 baeff27 82ec579 184c6e4 82ec579 184c6e4 82ec579 184c6e4 82ec579 184c6e4 82ec579 184c6e4 82ec579 184c6e4 82ec579 baeff27 33510a5 7d996ca daf586d 7d996ca b190eed 7d996ca 33510a5 b190eed 33510a5 7d996ca b190eed 7d996ca daf586d 7d996ca daf586d 7d996ca b190eed 7d996ca 0c62c39 b190eed 0c62c39 b190eed 33510a5 b190eed 7d996ca b190eed 7d996ca b190eed 7d996ca b190eed 33510a5 b190eed 7d996ca b190eed 33510a5 7d996ca daf586d b190eed 33510a5 82ec579 daf586d 82ec579 33510a5 82ec579 33510a5 82ec579 33510a5 baeff27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 |
import streamlit as st
import io
from io import BytesIO
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import google.generativeai as genai
from datetime import datetime
import json
import numpy as np
from docx import Document
import re
from prompts import SESSION_EVALUATION_PROMPT, MI_SYSTEM_PROMPT
def show_session_analysis():
st.title("MI Session Analysis Dashboard")
# Initialize session state for analysis results
if 'analysis_results' not in st.session_state:
st.session_state.analysis_results = None
if 'current_transcript' not in st.session_state:
st.session_state.current_transcript = None
# Main layout
col1, col2 = st.columns([1, 2])
with col1:
show_upload_section()
with col2:
if st.session_state.analysis_results:
show_analysis_results()
def show_upload_section():
st.header("Session Data Upload")
upload_type = st.radio(
"Select Input Method:",
["Audio Recording", "Video Recording", "Text Transcript", "Session Notes", "Previous Session Data"]
)
if upload_type in ["Audio Recording", "Video Recording"]:
file = st.file_uploader(
f"Upload {upload_type}",
type=["wav", "mp3", "mp4"] if upload_type == "Audio Recording" else ["mp4", "avi", "mov"]
)
if file:
process_media_file(file, upload_type)
elif upload_type == "Text Transcript":
file = st.file_uploader("Upload Transcript", type=["txt", "doc", "docx", "json"])
if file:
process_text_file(file)
elif upload_type == "Session Notes":
show_manual_input_form()
else: # Previous Session Data
show_previous_sessions_selector()
def process_video_file(video_file):
"""Process uploaded video file"""
try:
# Create a unique temporary file name
temp_path = f"temp_video_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp4"
# Save video temporarily
with open(temp_path, "wb") as f:
f.write(video_file.getbuffer())
# Display video
st.video(temp_path)
# Add transcript input
transcript = st.text_area(
"Enter the session transcript:",
height=300,
help="Paste or type the transcript of the session here."
)
# Add analyze button
if st.button("Analyze Transcript"):
if transcript.strip():
with st.spinner('Analyzing transcript...'):
analyze_session_content(transcript)
else:
st.warning("Please enter a transcript before analyzing.")
# Clean up temporary file
try:
os.remove(temp_path)
except:
pass
except Exception as e:
st.error(f"Error processing video: {str(e)}")
def process_audio_file(audio_file):
"""Process uploaded audio file"""
try:
# Save audio temporarily
temp_path = f"temp_audio_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp3"
with open(temp_path, "wb") as f:
f.write(audio_file.getbuffer())
st.audio(temp_path)
st.info("Audio uploaded successfully. Please provide transcript.")
# Add manual transcript input
transcript = st.text_area("Enter the session transcript:", height=300)
# Add analyze button
if st.button("Analyze Transcript"):
if transcript:
with st.spinner('Analyzing transcript...'):
st.session_state.current_transcript = transcript
analyze_session_content(transcript)
else:
st.warning("Please enter a transcript before analyzing.")
except Exception as e:
st.error(f"Error processing audio: {str(e)}")
def process_media_file(file, type):
st.write(f"Processing {type}...")
# Add processing status
status = st.empty()
progress_bar = st.progress(0)
try:
# Read file content
file_content = file.read()
status.text("Generating transcript...")
progress_bar.progress(50)
# Generate transcript using Gemini
model = genai.GenerativeModel('gemini-pro')
# Convert file content to text
if type == "Audio Recording":
# For audio files, create a prompt that describes the audio
prompt = f"""
This is an audio recording of a therapy session.
Please transcribe the conversation and include speaker labels where possible.
Focus on capturing:
1. The therapist's questions and reflections
2. The client's responses and statements
3. Any significant pauses or non-verbal sounds
"""
else: # Video Recording
# For video files, create a prompt that describes the video
prompt = f"""
This is a video recording of a therapy session.
Please transcribe the conversation and include:
1. Speaker labels
2. Verbal communication
3. Relevant non-verbal cues and body language
4. Significant pauses or interactions
"""
# Generate transcript
response = model.generate_content(prompt)
transcript = response.text
if transcript:
st.session_state.current_transcript = transcript
status.text("Analyzing content...")
progress_bar.progress(80)
analyze_session_content(transcript)
progress_bar.progress(100)
status.text("Processing complete!")
except Exception as e:
st.error(f"Error processing file: {str(e)}")
finally:
status.empty()
progress_bar.empty()
def get_processing_step_name(step):
steps = [
"Loading media file",
"Converting to audio",
"Performing speech recognition",
"Generating transcript",
"Preparing analysis"
]
return steps[step]
def process_text_file(file):
"""Process uploaded text file"""
try:
# Read file content
content = file.getvalue().decode("utf-8")
st.session_state.current_transcript = content
# Display transcript with edit option
edited_transcript = st.text_area(
"Review and edit transcript if needed:",
value=content,
height=300
)
# Add analyze button
if st.button("Analyze Transcript"):
with st.spinner('Analyzing transcript...'):
st.session_state.current_transcript = edited_transcript
analyze_session_content(edited_transcript)
except Exception as e:
st.error(f"Error processing file: {str(e)}")
def parse_analysis_results(raw_results):
"""Parse the raw analysis results into structured format"""
if isinstance(raw_results, dict):
return raw_results # Already parsed
try:
# If it's a string, try to extract structured data
analysis = {
'mi_adherence_score': 0,
'key_themes': [],
'technique_usage': {},
'strengths': [],
'areas_for_improvement': [],
'session_summary': ''
}
# Extract score (assuming it's in format "Score: XX")
score_match = re.search(r'Score:\s*(\d+)', raw_results)
if score_match:
analysis['mi_adherence_score'] = int(score_match.group(1))
# Extract themes (assuming they're listed after "Key Themes:")
themes_match = re.search(r'Key Themes:(.*?)(?=\n\n|\Z)', raw_results, re.DOTALL)
if themes_match:
themes = themes_match.group(1).strip().split('\n')
analysis['key_themes'] = [t.strip('- ') for t in themes if t.strip()]
# Extract techniques (assuming they're listed with counts)
techniques = re.findall(r'(\w+\s*\w*)\s*:\s*(\d+)', raw_results)
if techniques:
analysis['technique_usage'] = {t[0]: int(t[1]) for t in techniques}
# Extract strengths
strengths_match = re.search(r'Strengths:(.*?)(?=Areas for Improvement|\Z)', raw_results, re.DOTALL)
if strengths_match:
strengths = strengths_match.group(1).strip().split('\n')
analysis['strengths'] = [s.strip('- ') for s in strengths if s.strip()]
# Extract areas for improvement
improvements_match = re.search(r'Areas for Improvement:(.*?)(?=\n\n|\Z)', raw_results, re.DOTALL)
if improvements_match:
improvements = improvements_match.group(1).strip().split('\n')
analysis['areas_for_improvement'] = [i.strip('- ') for i in improvements if i.strip()]
# Extract summary
summary_match = re.search(r'Summary:(.*?)(?=\n\n|\Z)', raw_results, re.DOTALL)
if summary_match:
analysis['session_summary'] = summary_match.group(1).strip()
return analysis
except Exception as e:
st.error(f"Error parsing analysis results: {str(e)}")
return None
def show_manual_input_form():
st.subheader("Session Details")
with st.form("session_notes_form"):
# Basic session information
session_date = st.date_input("Session Date", datetime.now())
session_duration = st.number_input("Duration (minutes)", min_value=15, max_value=120, value=50)
# Session content
session_notes = st.text_area(
"Session Notes",
height=300,
placeholder="Enter detailed session notes here..."
)
# Key themes and observations
key_themes = st.text_area(
"Key Themes",
height=100,
placeholder="Enter key themes identified during the session..."
)
# MI specific elements
mi_techniques_used = st.multiselect(
"MI Techniques Used",
["Open Questions", "Affirmations", "Reflections", "Summaries",
"Change Talk", "Commitment Language", "Planning"]
)
# Submit button
submitted = st.form_submit_button("Analyze Session")
if submitted and session_notes:
# Combine all input into a structured format
session_data = {
'date': session_date,
'duration': session_duration,
'notes': session_notes,
'themes': key_themes,
'techniques': mi_techniques_used
}
# Process the session data
st.session_state.current_transcript = format_session_data(session_data)
analyze_session_content(st.session_state.current_transcript)
def analyze_session_content(transcript):
"""Analyze the session transcript using Gemini"""
try:
if not transcript:
st.warning("Please provide a transcript for analysis.")
return
# Configure the model
model = genai.GenerativeModel('gemini-pro')
# Structured prompt for MI analysis
prompt = f"""
As an MI (Motivational Interviewing) expert, analyze this therapy session transcript and provide detailed feedback in the following format:
=== MI Adherence ===
Score: [Provide a score from 0-100]
Strengths:
- [List 3 specific strengths with examples]
Areas for Growth:
- [List 3 specific areas needing improvement with examples]
=== Technical Analysis ===
OARS Usage Count:
- Open Questions: [number]
- Affirmations: [number]
- Reflections: [number]
- Summaries: [number]
=== Client Language Analysis ===
Change Talk Examples:
- [List 3-4 specific quotes showing change talk]
Sustain Talk Examples:
- [List 2-3 specific quotes showing sustain talk]
Change Talk/Sustain Talk Ratio: [X:Y]
=== Session Flow ===
Key Moments:
1. [Describe key moment 1]
2. [Describe key moment 2]
3. [Describe key moment 3]
Therapeutic Process:
- [Describe how the session progressed]
- [Note any significant shifts]
=== Recommendations ===
Priority Actions:
1. [Specific recommendation 1]
2. [Specific recommendation 2]
3. [Specific recommendation 3]
Development Strategies:
- [Practical strategy 1]
- [Practical strategy 2]
Analyze this transcript:
{transcript}
"""
# Generate response
response = model.generate_content(prompt)
# Store results
st.session_state.analysis_results = response.text
return True
except Exception as e:
st.error(f"Error in analysis: {str(e)}")
return False
def generate_transcript(audio_content):
"""
Generate transcript from audio content using Google Speech-to-Text
Note: This requires the Google Cloud Speech-to-Text API
"""
try:
# Initialize Speech-to-Text client
client = speech_v1.SpeechClient()
# Configure audio and recognition settings
audio = speech_v1.RecognitionAudio(content=audio_content)
config = speech_v1.RecognitionConfig(
encoding=speech_v1.RecognitionConfig.AudioEncoding.LINEAR16,
sample_rate_hertz=16000,
language_code="en-US",
enable_automatic_punctuation=True,
)
# Perform the transcription
response = client.recognize(config=config, audio=audio)
# Combine all transcriptions
transcript = ""
for result in response.results:
transcript += result.alternatives[0].transcript + " "
return transcript.strip()
except Exception as e:
st.error(f"Error in transcript generation: {str(e)}")
return None
def convert_video_to_audio(video_file):
"""
Convert video file to audio content
Note: This is a placeholder - you'll need to implement actual video to audio conversion
"""
# Placeholder for video to audio conversion
# You might want to use libraries like moviepy or ffmpeg-python
st.warning("Video to audio conversion not implemented yet")
return None
def process_analysis_results(raw_analysis):
"""Process and structure the analysis results"""
# Parse the raw analysis text and extract structured data
sections = extract_analysis_sections(raw_analysis)
# Calculate metrics
metrics = calculate_mi_metrics(raw_analysis)
return {
"raw_analysis": raw_analysis,
"structured_sections": sections,
"metrics": metrics,
"timestamp": datetime.now().isoformat()
}
def show_mi_metrics_dashboard(metrics):
st.subheader("MI Performance Dashboard")
col1, col2, col3, col4 = st.columns(4)
with col1:
show_metric_card(
"MI Spirit Score",
metrics.get('mi_spirit_score', 0),
"0-5 scale"
)
with col2:
show_metric_card(
"Change Talk Ratio",
metrics.get('change_talk_ratio', 0),
"Change vs Sustain"
)
with col3:
show_metric_card(
"Reflection Ratio",
metrics.get('reflection_ratio', 0),
"Reflections/Questions"
)
with col4:
show_metric_card(
"Overall Adherence",
metrics.get('overall_adherence', 0),
"Percentage"
)
def show_metric_card(title, value, subtitle):
st.markdown(
f"""
<div style="border:1px solid #ccc; padding:10px; border-radius:5px; text-align:center;">
<h3>{title}</h3>
<h2>{value:.2f}</h2>
<p>{subtitle}</p>
</div>
""",
unsafe_allow_html=True
)
def show_mi_adherence_analysis(results):
st.subheader("MI Adherence Analysis")
# OARS Implementation
st.write("### OARS Implementation")
show_oars_chart(results['metrics'].get('oars_metrics', {}))
# MI Spirit Components
st.write("### MI Spirit Components")
show_mi_spirit_chart(results['metrics'].get('mi_spirit_metrics', {}))
# Detailed breakdown
st.write("### Detailed Analysis")
st.markdown(results['structured_sections'].get('mi_adherence', ''))
def show_technical_skills_analysis(results):
st.subheader("Technical Skills Analysis")
# Question Analysis
col1, col2 = st.columns(2)
with col1:
show_question_type_chart(results['metrics'].get('question_metrics', {}))
with col2:
show_reflection_depth_chart(results['metrics'].get('reflection_metrics', {}))
# Detailed analysis
st.markdown(results['structured_sections'].get('technical_skills', ''))
def show_client_language_analysis(results):
st.subheader("Client Language Analysis")
# Change Talk Timeline
show_change_talk_timeline(results['metrics'].get('change_talk_timeline', []))
# Language Categories
show_language_categories_chart(results['metrics'].get('language_categories', {}))
# Detailed analysis
st.markdown(results['structured_sections'].get('client_language', ''))
def show_session_flow_analysis(results):
st.subheader("Session Flow Analysis")
# Session Flow Timeline
show_session_flow_timeline(results['metrics'].get('session_flow', []))
# Engagement Metrics
show_engagement_metrics(results['metrics'].get('engagement_metrics', {}))
# Detailed analysis
st.markdown(results['structured_sections'].get('session_flow', ''))
def show_recommendations(results):
st.subheader("Recommendations and Next Steps")
col1, col2 = st.columns(2)
with col1:
st.write("### Strengths")
strengths = results['structured_sections'].get('strengths', [])
for strength in strengths:
st.markdown(f"✓ {strength}")
with col2:
st.write("### Growth Areas")
growth_areas = results['structured_sections'].get('growth_areas', [])
for area in growth_areas:
st.markdown(f"→ {area}")
st.write("### Suggested Interventions")
st.markdown(results['structured_sections'].get('suggested_interventions', ''))
st.write("### Next Session Planning")
st.markdown(results['structured_sections'].get('next_session_plan', ''))
# Utility functions for charts and visualizations
def show_oars_chart(oars_metrics):
# Create OARS radar chart using plotly
categories = ['Open Questions', 'Affirmations', 'Reflections', 'Summaries']
values = [
oars_metrics.get('open_questions', 0),
oars_metrics.get('affirmations', 0),
oars_metrics.get('reflections', 0),
oars_metrics.get('summaries', 0)
]
fig = go.Figure(data=go.Scatterpolar(
r=values,
theta=categories,
fill='toself'
))
fig.update_layout(
polar=dict(
radialaxis=dict(
visible=True,
range=[0, max(values) + 1]
)),
showlegend=False
)
st.plotly_chart(fig)
def save_analysis_results():
"""Save analysis results to file"""
if st.session_state.analysis_results:
try:
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"analysis_results_{timestamp}.json"
with open(filename, "w") as f:
json.dump(st.session_state.analysis_results, f, indent=4)
st.success(f"Analysis results saved to {filename}")
except Exception as e:
st.error(f"Error saving analysis results: {str(e)}")
def show_upload_section():
"""Display the upload section of the dashboard"""
st.subheader("Upload Session")
upload_type = st.radio(
"Choose input method:",
["Text Transcript", "Video Recording", "Audio Recording", "Session Notes", "Previous Sessions"]
)
if upload_type == "Text Transcript":
file = st.file_uploader("Upload transcript file", type=['txt', 'doc', 'docx'])
if file:
process_text_file(file)
elif upload_type == "Video Recording":
video_file = st.file_uploader("Upload video file", type=['mp4', 'mov', 'avi'])
if video_file:
process_video_file(video_file)
elif upload_type == "Audio Recording":
audio_file = st.file_uploader("Upload audio file", type=['mp3', 'wav', 'm4a'])
if audio_file:
process_audio_file(audio_file)
elif upload_type == "Session Notes":
show_manual_input_form()
else:
show_previous_sessions_selector()
def process_text_file(file):
try:
if file.name.endswith('.json'):
content = json.loads(file.read().decode())
transcript = extract_transcript_from_json(content)
elif file.name.endswith('.docx'):
doc = Document(file)
transcript = '\n'.join([paragraph.text for paragraph in doc.paragraphs])
else:
transcript = file.read().decode()
if transcript:
st.session_state.current_transcript = transcript
analyze_session_content(transcript)
except Exception as e:
st.error(f"Error processing file: {str(e)}")
def show_export_options():
st.sidebar.subheader("Export Options")
if st.sidebar.button("Export Analysis Report"):
save_analysis_results()
report_format = st.sidebar.selectbox(
"Report Format",
["PDF", "DOCX", "JSON"]
)
if st.sidebar.button("Generate Report"):
generate_report(report_format)
def generate_report(format):
"""Generate analysis report in specified format"""
# Add report generation logic here
st.info(f"Generating {format} report... (Feature coming soon)")
def show_previous_sessions_selector():
"""Display selector for previous session data"""
st.subheader("Previous Sessions")
# Load or initialize previous sessions data
if 'previous_sessions' not in st.session_state:
st.session_state.previous_sessions = load_previous_sessions()
if not st.session_state.previous_sessions:
st.info("No previous sessions found.")
return
# Create session selector
sessions = st.session_state.previous_sessions
session_dates = [session['date'] for session in sessions]
selected_date = st.selectbox(
"Select Session Date:",
session_dates,
format_func=lambda x: x.strftime("%Y-%m-%d %H:%M")
)
# Show selected session data
if selected_date:
selected_session = next(
(session for session in sessions if session['date'] == selected_date),
None
)
if selected_session:
st.session_state.current_transcript = selected_session['transcript']
analyze_session_content(selected_session['transcript'])
def load_previous_sessions():
"""Load previous session data from storage"""
try:
# Initialize empty list for sessions
sessions = []
# Here you would typically load from your database or file storage
# For demonstration, we'll create some sample data
sample_sessions = [
{
'date': datetime.now(),
'transcript': "Sample transcript 1...",
'analysis': "Sample analysis 1..."
},
{
'date': datetime.now(),
'transcript': "Sample transcript 2...",
'analysis': "Sample analysis 2..."
}
]
return sample_sessions
except Exception as e:
st.error(f"Error loading previous sessions: {str(e)}")
return []
def format_session_data(session_data):
"""Format session data into analyzable transcript"""
formatted_text = f"""
Session Date: {session_data['date']}
Duration: {session_data['duration']} minutes
SESSION NOTES:
{session_data['notes']}
KEY THEMES:
{session_data['themes']}
MI TECHNIQUES USED:
{', '.join(session_data['techniques'])}
"""
return formatted_text
def show_analysis_results():
"""Display the analysis results in organized tabs"""
if 'analysis_results' not in st.session_state or not st.session_state.analysis_results:
st.info("Please analyze a transcript first.")
return
results = st.session_state.analysis_results
# Create tabs
tabs = st.tabs([
"MI Adherence",
"Technical Skills",
"Client Language",
"Session Flow",
"Recommendations"
])
# MI Adherence Tab
with tabs[0]:
st.subheader("MI Adherence Analysis")
# Extract score
score_match = re.search(r'Score:\s*(\d+)', results)
if score_match:
score = int(score_match.group(1))
# Create score gauge
fig = go.Figure(go.Indicator(
mode="gauge+number",
value=score,
domain={'x': [0, 1], 'y': [0, 1]},
gauge={
'axis': {'range': [0, 100]},
'bar': {'color': "rgb(26, 118, 255)"},
'steps': [
{'range': [0, 33], 'color': "lightgray"},
{'range': [33, 66], 'color': "gray"},
{'range': [66, 100], 'color': "darkgray"}
]
}
))
st.plotly_chart(fig)
# Display strengths and areas for growth
col1, col2 = st.columns(2)
with col1:
st.subheader("Strengths")
strengths = re.findall(r'Strengths:\n((?:- .*\n)*)', results)
if strengths:
for strength in strengths[0].strip().split('\n'):
if strength.startswith('- '):
st.markdown(f"✅ {strength[2:]}")
with col2:
st.subheader("Areas for Growth")
growth = re.findall(r'Areas for Growth:\n((?:- .*\n)*)', results)
if growth:
for area in growth[0].strip().split('\n'):
if area.startswith('- '):
st.markdown(f"🔄 {area[2:]}")
# Technical Skills Tab
with tabs[1]:
st.subheader("OARS Technique Analysis")
# Extract OARS counts
oars_pattern = r'OARS Usage Count:\n- Open Questions: (\d+)\n- Affirmations: (\d+)\n- Reflections: (\d+)\n- Summaries: (\d+)'
oars_match = re.search(oars_pattern, results)
if oars_match:
open_q = int(oars_match.group(1))
affirm = int(oars_match.group(2))
reflect = int(oars_match.group(3))
summ = int(oars_match.group(4))
# Create bar chart
fig = go.Figure(data=[
go.Bar(
x=['Open Questions', 'Affirmations', 'Reflections', 'Summaries'],
y=[open_q, affirm, reflect, summ],
marker_color=['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728']
)
])
fig.update_layout(
title="OARS Techniques Usage",
xaxis_title="Technique Type",
yaxis_title="Frequency",
showlegend=False,
height=400
)
st.plotly_chart(fig)
# Display detailed breakdown
col1, col2 = st.columns(2)
with col1:
st.markdown("### Technique Counts")
st.markdown(f"🔹 **Open Questions:** {open_q}")
st.markdown(f"🔹 **Affirmations:** {affirm}")
st.markdown(f"🔹 **Reflections:** {reflect}")
st.markdown(f"🔹 **Summaries:** {summ}")
with col2:
# Calculate total and percentages
total = open_q + affirm + reflect + summ
st.markdown("### Technique Distribution")
st.markdown(f"🔸 **Open Questions:** {(open_q/total*100):.1f}%")
st.markdown(f"🔸 **Affirmations:** {(affirm/total*100):.1f}%")
st.markdown(f"🔸 **Reflections:** {(reflect/total*100):.1f}%")
st.markdown(f"🔸 **Summaries:** {(summ/total*100):.1f}%")
# Add reflection-to-question ratio
st.markdown("### Key Metrics")
if open_q > 0:
r_to_q = reflect / open_q
st.metric(
label="Reflection-to-Question Ratio",
value=f"{r_to_q:.2f}",
help="Target ratio is 2:1 or higher"
)
# Add MI best practice guidelines
st.markdown("### MI Best Practices")
st.info("""
📌 **Ideal OARS Distribution:**
- Reflections should exceed questions (2:1 ratio)
- Regular use of affirmations (at least 1-2 per session)
- Strategic use of summaries at transition points
- Open questions > 70% of all questions
""")
else:
st.warning("Technical skills analysis data not found in the results.")
# Client Language Tab
with tabs[2]:
st.subheader("Client Language Analysis")
col1, col2 = st.columns(2)
with col1:
st.markdown("### Change Talk 🌱")
change_talk = re.findall(r'Change Talk Examples:\n((?:- .*\n)*)', results)
if change_talk:
for talk in change_talk[0].strip().split('\n'):
if talk.startswith('- '):
st.markdown(f"- {talk[2:]}")
with col2:
st.markdown("### Sustain Talk 🔄")
sustain_talk = re.findall(r'Sustain Talk Examples:\n((?:- .*\n)*)', results)
if sustain_talk:
for talk in sustain_talk[0].strip().split('\n'):
if talk.startswith('- '):
st.markdown(f"- {talk[2:]}")
# Session Flow Tab
with tabs[3]:
st.subheader("Session Flow Analysis")
# Key Moments
st.markdown("### Key Moments")
key_moments = re.findall(r'Key Moments:\n((?:\d\. .*\n)*)', results)
if key_moments:
for moment in key_moments[0].strip().split('\n'):
if moment.strip():
st.markdown(f"{moment}")
# Therapeutic Process
st.markdown("### Therapeutic Process")
process = re.findall(r'Therapeutic Process:\n((?:- .*\n)*)', results)
if process:
for item in process[0].strip().split('\n'):
if item.startswith('- '):
st.markdown(f"- {item[2:]}")
# Recommendations Tab
with tabs[4]:
st.subheader("Recommendations")
# Priority Actions
st.markdown("### Priority Actions 🎯")
priorities = re.findall(r'Priority Actions:\n((?:\d\. .*\n)*)', results)
if priorities:
for priority in priorities[0].strip().split('\n'):
if priority.strip():
st.markdown(f"{priority}")
# Development Strategies
st.markdown("### Development Strategies 📈")
strategies = re.findall(r'Development Strategies:\n((?:- .*\n)*)', results)
if strategies:
for strategy in strategies[0].strip().split('\n'):
if strategy.startswith('- '):
st.markdown(f"- {strategy[2:]}")
def get_technique_description(technique):
"""Return description for MI techniques"""
descriptions = {
"Open Questions": "Questions that allow for elaboration and cannot be answered with a simple yes/no.",
"Reflections": "Statements that mirror, rephrase, or elaborate on the client's speech.",
"Affirmations": "Statements that recognize client strengths and acknowledge behaviors that lead to positive change.",
"Summaries": "Statements that collect, link, and transition between client statements.",
"Information Giving": "Providing information with permission and in response to client needs.",
# Add more techniques as needed
}
return descriptions.get(technique, "Description not available")
def create_session_timeline(timeline_data):
"""Create a visual timeline of the session"""
if not timeline_data:
st.info("Detailed timeline not available")
return
fig = go.Figure()
# Add timeline visualization code here
st.plotly_chart(fig)
def get_improvement_suggestion(area):
"""Return specific suggestions for improvement areas"""
suggestions = {
"Open Questions": "Try replacing closed questions with open-ended ones. Instead of 'Did you exercise?', ask 'What kinds of physical activity have you been doing?'",
"Reflections": "Practice using more complex reflections by adding meaning or emotion to what the client has said.",
"Empathy": "Focus on seeing the situation from the client's perspective and verbalize your understanding.",
# Add more suggestions as needed
}
return suggestions.get(area, "Work on incorporating this element more intentionally in your sessions.")
def create_action_items(analysis):
"""Create specific action items based on analysis"""
st.write("Based on the analysis, consider focusing on these specific actions:")
# Example action items
action_items = [
"Practice one new MI skill each session",
"Record and review your sessions",
"Focus on developing complex reflections",
"Track change talk/sustain talk ratio"
]
for item in action_items:
st.checkbox(item)
def show_relevant_resources(analysis):
"""Display relevant resources based on analysis"""
resources = [
{"title": "MI Practice Exercises", "url": "#"},
{"title": "Reflection Templates", "url": "#"},
{"title": "Change Talk Recognition Guide", "url": "#"},
{"title": "MI Community of Practice", "url": "#"}
]
for resource in resources:
st.markdown(f"[{resource['title']}]({resource['url']})")
def parse_analysis_response(response_text):
"""Parse the AI response into structured analysis results"""
try:
# Initialize default structure for analysis results
analysis = {
'mi_adherence_score': 0.0,
'key_themes': [],
'technique_usage': {},
'strengths': [],
'areas_for_improvement': [],
'recommendations': [],
'change_talk_instances': [],
'session_summary': ""
}
# Extract MI adherence score
score_match = re.search(r'MI Adherence Score:\s*(\d+\.?\d*)', response_text)
if score_match:
analysis['mi_adherence_score'] = float(score_match.group(1))
# Extract key themes
themes_section = re.search(r'Key Themes:(.*?)(?=\n\n|\Z)', response_text, re.DOTALL)
if themes_section:
themes = themes_section.group(1).strip().split('\n')
analysis['key_themes'] = [theme.strip('- ') for theme in themes if theme.strip()]
# Extract technique usage
technique_section = re.search(r'Technique Usage:(.*?)(?=\n\n|\Z)', response_text, re.DOTALL)
if technique_section:
techniques = technique_section.group(1).strip().split('\n')
for technique in techniques:
if ':' in technique:
name, count = technique.split(':')
analysis['technique_usage'][name.strip()] = int(count.strip())
# Extract strengths
strengths_section = re.search(r'Strengths:(.*?)(?=\n\n|\Z)', response_text, re.DOTALL)
if strengths_section:
strengths = strengths_section.group(1).strip().split('\n')
analysis['strengths'] = [s.strip('- ') for s in strengths if s.strip()]
# Extract areas for improvement
improvements_section = re.search(r'Areas for Improvement:(.*?)(?=\n\n|\Z)', response_text, re.DOTALL)
if improvements_section:
improvements = improvements_section.group(1).strip().split('\n')
analysis['areas_for_improvement'] = [i.strip('- ') for i in improvements if i.strip()]
# Extract session summary
summary_section = re.search(r'Session Summary:(.*?)(?=\n\n|\Z)', response_text, re.DOTALL)
if summary_section:
analysis['session_summary'] = summary_section.group(1).strip()
return analysis
except Exception as e:
st.error(f"Error parsing analysis response: {str(e)}")
return None
def get_improvement_suggestion(area):
"""Return specific suggestions for improvement areas"""
suggestions = {
"open questions": "Practice replacing closed questions with open-ended ones. For example:\n- Instead of: 'Did you exercise?'\n- Try: 'What kinds of physical activity have you been doing?'",
"reflections": "Work on using more complex reflections by adding meaning or emotion to what the client has said. Try to make at least two complex reflections for every simple reflection.",
"empathy": "Focus on seeing the situation from the client's perspective. Take time to verbalize your understanding of their emotions and experiences.",
"summaries": "Use more collecting summaries to gather key points discussed and transition summaries to move between topics.",
"affirmations": "Look for opportunities to genuinely affirm client strengths and efforts, not just outcomes."
}
# Look for matching suggestions using partial string matching
for key, value in suggestions.items():
if key in area.lower():
return value
return "Focus on incorporating this element more intentionally in your sessions. Consider recording your sessions and reviewing them with a supervisor or peer."
def create_gauge_chart(score):
"""Create a gauge chart for MI Adherence Score"""
fig = go.Figure(go.Indicator(
mode = "gauge+number",
value = score,
domain = {'x': [0, 1], 'y': [0, 1]},
title = {'text': "MI Adherence"},
gauge = {
'axis': {'range': [0, 100]},
'bar': {'color': "darkblue"},
'steps': [
{'range': [0, 40], 'color': "lightgray"},
{'range': [40, 70], 'color': "gray"},
{'range': [70, 100], 'color': "darkgray"}
],
'threshold': {
'line': {'color': "red", 'width': 4},
'thickness': 0.75,
'value': 90
}
}
))
st.plotly_chart(fig)
def create_technique_usage_chart(technique_usage):
"""Create a bar chart for MI technique usage"""
df = pd.DataFrame(list(technique_usage.items()), columns=['Technique', 'Count'])
fig = px.bar(
df,
x='Technique',
y='Count',
title='MI Technique Usage Frequency'
)
fig.update_layout(
xaxis_title="Technique",
yaxis_title="Frequency",
showlegend=False
)
st.plotly_chart(fig)
def extract_transcript_from_json(content):
"""Extract transcript from JSON content"""
if isinstance(content, dict):
return json.dumps(content, indent=2)
return str(content)
# Analysis display functions
def show_mi_adherence_analysis(analysis):
st.subheader("MI Adherence Analysis")
st.write(analysis.get('raw_text', 'No analysis available'))
def show_technical_skills_analysis(analysis):
st.subheader("Technical Skills Analysis")
st.write(analysis.get('raw_text', 'No analysis available'))
def show_client_language_analysis(analysis):
st.subheader("Client Language Analysis")
st.write(analysis.get('raw_text', 'No analysis available'))
def show_session_flow_analysis(analysis):
st.subheader("Session Flow Analysis")
st.write(analysis.get('raw_text', 'No analysis available'))
def show_recommendations(analysis):
st.subheader("Recommendations")
st.write(analysis.get('raw_text', 'No recommendations available'))
if __name__ == "__main__":
show_session_analysis() |