Techglobal / app.py
Patrick079's picture
Update app.py
08b4840 verified
import os
import pandas as pd
import google.generativeai as genai
import numpy as np
import gradio as gr
# Initialize an empty DataFrame with columns 'Title' and 'Text'
df = pd.DataFrame(columns=['Title', 'Text'])
# Mapping filenames to custom titles
title_mapping = {
'company.txt': 'company_data',
'products.txt': 'product_data',
'shipping.txt': 'shipping_data'
}
# Process relevant files in the current directory
for file_name in os.listdir('.'):
if file_name in title_mapping:
try:
with open(file_name, 'r', encoding='utf-8') as file:
text = file.read().replace('\n', ' ') # Replace newlines with spaces for cleaner text
custom_title = title_mapping[file_name]
new_row = pd.DataFrame({'Title': [custom_title], 'Text': [text]})
df = pd.concat([df, new_row], ignore_index=True)
except Exception as e:
print(f"Error processing file {file_name}: {e}")
# Get the Google API key from environment variables
GEMINI_API_KEY = os.getenv("GOOGLE_API_KEY")
if not GEMINI_API_KEY:
raise EnvironmentError("Error: Gemini API key not found. Please set the GOOGLE_API_KEY environment variable.")
# Configure the Gemini API
try:
genai.configure(api_key=GEMINI_API_KEY)
except Exception as e:
raise RuntimeError(f"Error: Failed to configure the Gemini API. Details: {e}")
# Function to embed text using the Google Generative AI API
def embed_text(text):
try:
return genai.embed_content(
model='models/embedding-001',
content=text,
task_type='retrieval_document'
)['embedding']
except Exception as e:
raise RuntimeError(f"Error embedding text: {e}")
# Add embeddings to the DataFrame
if 'Embeddings' not in df.columns:
df['Embeddings'] = df['Text'].apply(embed_text)
# Function to calculate similarity score between the query and document embeddings
def query_similarity_score(query, vector):
query_embedding = embed_text(query)
return np.dot(query_embedding, vector)
# Function to get the most similar document based on the query
def most_similar_document(query):
local_df = df.copy()
local_df['Similarity'] = local_df['Embeddings'].apply(lambda vector: query_similarity_score(query, vector))
most_similar = local_df.sort_values('Similarity', ascending=False).iloc[0]
return most_similar['Title'], most_similar['Text']
# Function to generate a response using the RAG approach
def RAG(query):
try:
title, text = most_similar_document(query)
model = genai.GenerativeModel('gemini-pro')
prompt = f"Answer this query:\n{query}.\nOnly use this context to answer:\n{text}"
response = model.generate_content(prompt)
return f"{response.text}\n\nSource Document: {title}"
except Exception as e:
return f"Error: {e}"
# Gradio interface
iface = gr.Interface(
fn=RAG, # Main function to handle the query
inputs=[
gr.Textbox(label="Enter Your Query"), # Input for the user's query
],
outputs=gr.Textbox(label="Response"), # Output for the generated response
title="Patrick's Multilingual Query Handler"
)
if __name__ == "__main__":
iface.launch()