Spaces:
Sleeping
Sleeping
import os | |
import pandas as pd | |
import google.generativeai as genai | |
import numpy as np | |
import gradio as gr | |
# Initialize an empty DataFrame with columns 'Title' and 'Text' | |
df = pd.DataFrame(columns=['Title', 'Text']) | |
# Mapping filenames to custom titles | |
title_mapping = { | |
'company.txt': 'company_data', | |
'products.txt': 'product_data', | |
'shipping.txt': 'shipping_data' | |
} | |
# Process relevant files in the current directory | |
for file_name in os.listdir('.'): | |
if file_name in title_mapping: | |
try: | |
with open(file_name, 'r', encoding='utf-8') as file: | |
text = file.read().replace('\n', ' ') # Replace newlines with spaces for cleaner text | |
custom_title = title_mapping[file_name] | |
new_row = pd.DataFrame({'Title': [custom_title], 'Text': [text]}) | |
df = pd.concat([df, new_row], ignore_index=True) | |
except Exception as e: | |
print(f"Error processing file {file_name}: {e}") | |
# Get the Google API key from environment variables | |
GEMINI_API_KEY = os.getenv("GOOGLE_API_KEY") | |
if not GEMINI_API_KEY: | |
raise EnvironmentError("Error: Gemini API key not found. Please set the GOOGLE_API_KEY environment variable.") | |
# Configure the Gemini API | |
try: | |
genai.configure(api_key=GEMINI_API_KEY) | |
except Exception as e: | |
raise RuntimeError(f"Error: Failed to configure the Gemini API. Details: {e}") | |
# Function to embed text using the Google Generative AI API | |
def embed_text(text): | |
try: | |
return genai.embed_content( | |
model='models/embedding-001', | |
content=text, | |
task_type='retrieval_document' | |
)['embedding'] | |
except Exception as e: | |
raise RuntimeError(f"Error embedding text: {e}") | |
# Add embeddings to the DataFrame | |
if 'Embeddings' not in df.columns: | |
df['Embeddings'] = df['Text'].apply(embed_text) | |
# Function to calculate similarity score between the query and document embeddings | |
def query_similarity_score(query, vector): | |
query_embedding = embed_text(query) | |
return np.dot(query_embedding, vector) | |
# Function to get the most similar document based on the query | |
def most_similar_document(query): | |
local_df = df.copy() | |
local_df['Similarity'] = local_df['Embeddings'].apply(lambda vector: query_similarity_score(query, vector)) | |
most_similar = local_df.sort_values('Similarity', ascending=False).iloc[0] | |
return most_similar['Title'], most_similar['Text'] | |
# Function to generate a response using the RAG approach | |
def RAG(query): | |
try: | |
title, text = most_similar_document(query) | |
model = genai.GenerativeModel('gemini-pro') | |
prompt = f"Answer this query:\n{query}.\nOnly use this context to answer:\n{text}" | |
response = model.generate_content(prompt) | |
return f"{response.text}\n\nSource Document: {title}" | |
except Exception as e: | |
return f"Error: {e}" | |
# Gradio interface | |
iface = gr.Interface( | |
fn=RAG, # Main function to handle the query | |
inputs=[ | |
gr.Textbox(label="Enter Your Query"), # Input for the user's query | |
], | |
outputs=gr.Textbox(label="Response"), # Output for the generated response | |
title="Patrick's Multilingual Query Handler" | |
) | |
if __name__ == "__main__": | |
iface.launch() | |