import gradio as gr from ultralytics import YOLO # Import YOLOv9 import yolov9 # Define function to perform prediction with YOLO model def predict_image(image, model_path, image_size, conf_threshold, iou_threshold): # Load YOLO model model = YOLO(model_path) # Perform inference with YOLO model results = model.predict(image, size=image_size, conf=conf_threshold, iou=iou_threshold) # Render the output output_image = results.render() return output_image # Define Gradio interface def app(): with gr.Blocks(): with gr.Row(): with gr.Column(): img_path = gr.Image(type="filepath", label="Image") model_path = gr.Dropdown( label="Model", choices=[ "yolov9c-seg.pt", ], value="yolov9c-seg.pt", ) image_size = gr.Slider( label="Image Size", minimum=320, maximum=1280, step=32, value=640, ) conf_threshold = gr.Slider( label="Confidence Threshold", minimum=0.1, maximum=1.0, step=0.1, value=0.4, ) iou_threshold = gr.Slider( label="IoU Threshold", minimum=0.1, maximum=1.0, step=0.1, value=0.5, ) yolov9_infer = gr.Button("Submit") with gr.Column(): output_image = gr.Image(type="numpy", label="Output") yolov9_infer.click( fn=predict_image, inputs=[ img_path, model_path, image_size, conf_threshold, iou_threshold, ], outputs=[output_image], ) gradio_app = gr.Blocks() with gradio_app: gr.HTML( """

YOLOv9 Base Model

""") gr.HTML( """

""") with gr.Row(): with gr.Column(): app() gradio_app.launch(debug=True)