Parthebhan commited on
Commit
0152b73
·
verified ·
1 Parent(s): ccfae83

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -8
app.py CHANGED
@@ -3,27 +3,26 @@ from ultralytics import YOLO
3
  # Import YOLOv9
4
  import yolov9
5
 
6
- # Define function to perform prediction with YOLOv9 model
7
  def predict_image(image, model_path, image_size, conf_threshold, iou_threshold):
8
 
9
-
10
  # Load YOLO model
11
  model = YOLO(model_path)
12
 
13
  # Perform inference with YOLO model
14
- results = model(image, size=image_size, conf=conf_threshold, iou=iou_threshold)
15
 
16
  # Render the output
17
  output_image = results.render()
18
 
19
- return output_image[0]
20
 
21
  # Define Gradio interface
22
  def app():
23
  with gr.Blocks():
24
  with gr.Row():
25
  with gr.Column():
26
- img_path = gr.Image(type="filepath", label="Image")
27
  model_path = gr.Dropdown(
28
  label="Model",
29
  choices=[
@@ -52,10 +51,10 @@ def app():
52
  step=0.1,
53
  value=0.5,
54
  )
55
- yolov9_infer = gr.Button(value="Submit")
56
 
57
  with gr.Column():
58
- output_numpy = gr.Image(type="numpy", label="Output")
59
 
60
  yolov9_infer.click(
61
  fn=predict_image,
@@ -66,7 +65,7 @@ def app():
66
  conf_threshold,
67
  iou_threshold,
68
  ],
69
- outputs=[output_numpy],
70
  )
71
 
72
  gradio_app = gr.Blocks()
 
3
  # Import YOLOv9
4
  import yolov9
5
 
6
+ # Define function to perform prediction with YOLO model
7
  def predict_image(image, model_path, image_size, conf_threshold, iou_threshold):
8
 
 
9
  # Load YOLO model
10
  model = YOLO(model_path)
11
 
12
  # Perform inference with YOLO model
13
+ results = model.predict(image, size=image_size, conf=conf_threshold, iou=iou_threshold)
14
 
15
  # Render the output
16
  output_image = results.render()
17
 
18
+ return output_image
19
 
20
  # Define Gradio interface
21
  def app():
22
  with gr.Blocks():
23
  with gr.Row():
24
  with gr.Column():
25
+ img_path = gr.Image(type="file", label="Image")
26
  model_path = gr.Dropdown(
27
  label="Model",
28
  choices=[
 
51
  step=0.1,
52
  value=0.5,
53
  )
54
+ yolov9_infer = gr.Button(label="Submit")
55
 
56
  with gr.Column():
57
+ output_image = gr.Image(type="numpy", label="Output")
58
 
59
  yolov9_infer.click(
60
  fn=predict_image,
 
65
  conf_threshold,
66
  iou_threshold,
67
  ],
68
+ outputs=[output_image],
69
  )
70
 
71
  gradio_app = gr.Blocks()