Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -6,45 +6,51 @@ with open('./xgb_waze.pickle', 'rb') as file:
|
|
6 |
model = pickle.load(file)
|
7 |
|
8 |
# Define the function for making predictions
|
9 |
-
def salifort(
|
10 |
-
inputs = [[
|
|
|
|
|
|
|
|
|
|
|
11 |
prediction = model.predict(inputs)
|
12 |
prediction_value = prediction[0]
|
13 |
if prediction_value == 0:
|
14 |
-
label_text = '
|
15 |
else:
|
16 |
-
label_text = '
|
17 |
return label_text
|
18 |
|
19 |
# Create the Gradio interface
|
20 |
salifort_ga = gr.Interface(fn=salifort,
|
21 |
inputs = [
|
22 |
-
gr.Number(0,
|
23 |
-
gr.Number(
|
24 |
-
gr.Number(
|
25 |
-
gr.Number(
|
26 |
-
gr.Number(0,
|
27 |
-
gr.Number(0,
|
28 |
-
gr.Number(
|
29 |
-
gr.Number(
|
30 |
-
gr.Number(0,
|
31 |
-
gr.Number(0,
|
32 |
-
gr.Number(0,
|
33 |
-
gr.Number(0, 1, label="
|
34 |
-
gr.Number(0, 1, label="
|
35 |
-
gr.Number(0,
|
36 |
-
gr.Number(
|
37 |
-
gr.Number(0,
|
38 |
-
gr.Number(0,
|
|
|
39 |
],
|
40 |
-
outputs = "text", title="Data-driven suggestions for
|
41 |
examples = [
|
42 |
[0, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
|
43 |
[0, 3, 3, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1],
|
44 |
[0, 2, 3, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
|
45 |
[0, 6, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1]
|
46 |
],
|
47 |
-
description="
|
48 |
theme='dark'
|
49 |
)
|
50 |
|
|
|
6 |
model = pickle.load(file)
|
7 |
|
8 |
# Define the function for making predictions
|
9 |
+
def salifort(sessions, drives, total_sessions, n_days_after_onboarding, total_navigations_fav1, total_navigations_fav2, driven_km_drives, duration_minutes_drives, activity_days, driving_days, km_per_driving_day, percent_sessions_in_last_month, professional_driver, total_sessions_per_day, km_per_hour, km_per_drive, percent_of_drives_to_favorite, device2):
|
10 |
+
inputs = [['sessions', 'drives', 'total_sessions', 'n_days_after_onboarding',
|
11 |
+
'total_navigations_fav1', 'total_navigations_fav2', 'driven_km_drives',
|
12 |
+
'duration_minutes_drives', 'activity_days', 'driving_days',
|
13 |
+
'km_per_driving_day', 'percent_sessions_in_last_month',
|
14 |
+
'professional_driver', 'total_sessions_per_day', 'km_per_hour',
|
15 |
+
'km_per_drive', 'percent_of_drives_to_favorite', 'device2']]
|
16 |
prediction = model.predict(inputs)
|
17 |
prediction_value = prediction[0]
|
18 |
if prediction_value == 0:
|
19 |
+
label_text = 'User Retained 🟢'
|
20 |
else:
|
21 |
+
label_text = 'User Churned 🔴'
|
22 |
return label_text
|
23 |
|
24 |
# Create the Gradio interface
|
25 |
salifort_ga = gr.Interface(fn=salifort,
|
26 |
inputs = [
|
27 |
+
gr.Number(0, 743, label="sessions: [0 to 743]")
|
28 |
+
gr.Number(0, 596, label="drives: [0 to 596]")
|
29 |
+
gr.Number(0, 1216, label="total_sessions: [0 to 1216]")
|
30 |
+
gr.Number(4, 3500, label="n_days_after_onboarding: [4 to 3500]")
|
31 |
+
gr.Number(0, 1236, label="total_navigations_fav1: [0 to 1236]")
|
32 |
+
gr.Number(0, 415, label="total_navigations_fav2: [0 to 415]")
|
33 |
+
gr.Number(60, 21183, label="driven_km_drives: [60 to 21183]")
|
34 |
+
gr.Number(18, 15852, label="duration_minutes_drives: [18 to 15852]")
|
35 |
+
gr.Number(0, 31, label="activity_days: [0 to 31]")
|
36 |
+
gr.Number(0, 30, label="driving_days: [0 to 30]")
|
37 |
+
gr.Number(0, 15420, label="km_per_driving_day: [0 to 15420]")
|
38 |
+
gr.Number(0, 1.5, label="percent_sessions_in_last_month: [0 to 1.5]")
|
39 |
+
gr.Number(0, 1, label="professional_driver: [0 to 1]")
|
40 |
+
gr.Number(0, 39, label="total_sessions_per_day: [0 to 39]")
|
41 |
+
gr.Number(72, 23642, label="km_per_hour: [72 to 23642]")
|
42 |
+
gr.Number(0, 15777, label="km_per_drive: [0 to 15777]")
|
43 |
+
gr.Number(0, 777, label="percent_of_drives_to_favorite: [0 to 777]")
|
44 |
+
gr.Number(0, 1, label="device2: [0 to 1]")
|
45 |
],
|
46 |
+
outputs = "text", title="Data-driven suggestions for Waze - User Churn",
|
47 |
examples = [
|
48 |
[0, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
|
49 |
[0, 3, 3, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1],
|
50 |
[0, 2, 3, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
|
51 |
[0, 6, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1]
|
52 |
],
|
53 |
+
description="User Churn Prediction Using Machine Learning",
|
54 |
theme='dark'
|
55 |
)
|
56 |
|