|
import pickle |
|
import gradio as gr |
|
|
|
|
|
with open('./RF with pipe.pickle', 'rb') as file: |
|
model = pickle.load(file) |
|
|
|
|
|
def cerviccancer(Age, Num_sexual_partners, First_sexual_intercourse, Num_pregnancies, Smokes, Smokes_years, Smokes_packs_year, |
|
Hormonal_Contraceptives, Hormonal_Contraceptives_years, IUD, IUD_years, STDs, STDs_condylomatosis, STDs_cervical_condylomatosis, |
|
STDs_vaginal_condylomatosis, STDs_vulvoperineal_condylomatosis, STDs_syphilis, STDs_pelvic_inflammatory_disease, STDs_genital_herpes, |
|
STDs_molluscum_contagiosum, STDs_AIDS, STDs_HIV, STDs_Hepatitis_B, STDs_HPV, STDs_Num_of_diagnosis, Dx_Cancer, Dx_CIN, Dx, Hinselmann, Schiller, Citology): |
|
inputs = [[Age, Num_sexual_partners, First_sexual_intercourse, Num_pregnancies, Smokes, Smokes_years, Smokes_packs_year, |
|
Hormonal_Contraceptives, Hormonal_Contraceptives_years, IUD, IUD_years, STDs, STDs_condylomatosis, STDs_cervical_condylomatosis, |
|
STDs_vaginal_condylomatosis, STDs_vulvoperineal_condylomatosis, STDs_syphilis, STDs_pelvic_inflammatory_disease, STDs_genital_herpes, |
|
STDs_molluscum_contagiosum, STDs_AIDS, STDs_HIV, STDs_Hepatitis_B, STDs_HPV, STDs_Num_of_diagnosis, Dx_Cancer, Dx_CIN, Dx, Hinselmann, Schiller, Citology]] |
|
prediction = model.predict(inputs) |
|
prediction_value = prediction[0] |
|
return f"Predicted probability of Biopsy: {prediction_value}" |
|
|
|
|
|
|
|
automatidata_ga = gr.Interface(fn=automatidata, |
|
inputs = [ |
|
gr.Number(13.0, 84.0, label="Age: [13.0 84.0]"), |
|
gr.Number(1.0, 28.0, label="Number of sexual partners: [1.0 28.0]"), |
|
gr.Number(10.0, 32.0, label="First sexual intercourse: [10.0 32.0]"), |
|
gr.Number(0.0, 11.0, label="Num of pregnancies: [0.0 11.0]"), |
|
gr.Number(0.0, 1.0, label="Smokes: [0.0 1.0]"), |
|
gr.Number(0.0, 37.0, label="Smokes (years): [0.0 37.0]"), |
|
gr.Number(0.0, 37.0, label="Smokes (packs/year): [0.0 37.0]"), |
|
gr.Number(0.0, 1.0, label="Hormonal Contraceptives: [0.0 1.0]"), |
|
gr.Number(0.0, 30.0, label="Hormonal Contraceptives (years): [0.0 30.0]"), |
|
gr.Number(0.0, 1.0, label="IUD: [0.0 1.0]"), |
|
gr.Number(0.0, 19.0, label="IUD (years): [0.0 19.0]"), |
|
gr.Number(0.0, 1.0, label="STDs: [0.0 1.0]"), |
|
gr.Number(0.0, 1.0, label="STDs:condylomatosis: [0.0 1.0]"), |
|
gr.Number(0.0, 0.0, label="STDs:cervical condylomatosis: [0.0 0.0]"), |
|
gr.Number(0.0, 1.0, label="STDs:vaginal condylomatosis: [0.0 1.0]"), |
|
gr.Number(0.0, 1.0, label="STDs:vulvo-perineal condylomatosis: [0.0 1.0]"), |
|
gr.Number(0.0, 1.0, label="STDs:syphilis: [0.0 1.0]"), |
|
gr.Number(0.0, 1.0, label="STDs:pelvic inflammatory disease: [0.0 1.0]"), |
|
gr.Number(0.0, 1.0, label="STDs:genital herpes: [0.0 1.0]"), |
|
gr.Number(0.0, 1.0, label="STDs:molluscum contagiosum: [0.0 1.0]"), |
|
gr.Number(0.0, 0.0, label="STDs:AIDS: [0.0 0.0]"), |
|
gr.Number(0.0, 1.0, label="STDs:HIV: [0.0 1.0]"), |
|
gr.Number(0.0, 1.0, label="STDs:Hepatitis B: [0.0 1.0]"), |
|
gr.Number(0.0, 1.0, label="STDs:HPV: [0.0 1.0]"), |
|
gr.Number(0.0, 3.0, label="STDs: Number of diagnosis: [0.0 3.0]"), |
|
gr.Number(0.0, 1.0, label="Dx:Cancer: [0.0 1.0]"), |
|
gr.Number(0.0, 1.0, label="Dx:CIN: [0.0 1.0]"), |
|
gr.Number(0.0, 1.0, label="Dx: [0.0 1.0]"), |
|
gr.Number(0.0, 1.0, label="Hinselmann: [0.0 1.0]"), |
|
gr.Number(0.0, 1.0, label="Schiller: [0.0 1.0]"), |
|
gr.Number(0.0, 1.0, label="Citology: [0.0 1.0]"), |
|
gr.Number(0.0, 1.0, label="Biopsy: [0.0 1.0]") |
|
], |
|
outputs="text", title="Cervical Cancer Risk Prediction", |
|
description="Predicting probability of Biopsy Using Machine Learning.", |
|
theme='dark' |
|
) |
|
|
|
automatidata_ga.launch(auth = ('parthebhan','cerviccancer'),share=True) |