import gradio as gr import pickle def read_pickle(path, saved_model_name:str): with open(path + saved_model_name + '.pickle', 'rb') as to_read: model = pickle.load(to_read) return model def automatidata(VendorID, passenger_count, Distance, Duration, rush_hour): inputs = [[VendorID, passenger_count, Distance, Duration, rush_hour]] prediction = model.predict(inputs) prediction_value = prediction[0][0] return f" Fare amount(approx.) = {round(prediction_value,2)} $" path = 'F:/Case study/Interview preparation/01.Project/1. Automatidata/Final/' model = read_pickle(path,'Automatidata_gui') automatidata_ga = gr.Interface(fn=automatidata, inputs = [ gr.Number(1,2, label="VendorID - [1, 2]"), gr.Number(0,6, label="Passenger Count"), gr.Number(label="Distance"), gr.Number(label="Duration"), gr.Number(0,1, label="Rush Hour") ], outputs = "text",title="Taxi Fares Estimater", description="Predicting Taxi Fare Amount Using Machine Learning.", ) if __name__ == "__main__": automatidata_ga.launch(share=True)