iimport pickle import gradio as gr # Define the function to read the pickled model def read_pickle(path, saved_model_name): with open(path + saved_model_name + '.pickle', 'rb') as to_read: model = pickle.load(to_read) return model # Load the pickled model path = './' # Assuming the model file is in the current directory model = read_pickle(path, "Automatidata_gui") # Define the function for making predictions def automatidata(VendorID, passenger_count, Distance, Duration, rush_hour): inputs = [[VendorID, passenger_count, Distance, Duration, rush_hour]] prediction = model.predict(inputs) prediction_value = prediction[0][0] return f"Fare amount(approx.) = {round(prediction_value, 2)} $" # Create the Gradio interface automatidata_ga = gr.Interface(fn=automatidata, inputs=[ gr.Number(1, 2, label="VendorID - [1, 2]"), gr.Number(0, 6, label="Passenger Count"), gr.Number(label="Distance"), gr.Number(label="Duration"), gr.Number(0, 1, label="Rush Hour") ], outputs="text", title="Taxi Fares Estimator", description="Predicting Taxi Fare Amount Using Machine Learning." ) # Launch the interface if __name__ == "__main__": automatidata_ga.launch(share=True)