import pickle import gradio as gr # Load the pickled model with open('./Automatidata_gui.pickle', 'rb') as file: model = pickle.load(file) # Define the function for making predictions def automatidata(VendorID, passenger_count, Distance, Duration, rush_hour): inputs = [[VendorID, passenger_count, Distance, Duration, rush_hour]] prediction = model.predict(inputs) prediction_value = prediction[0][0] return f"Fare amount(approx.) = {round(prediction_value, 2)} $" # Create the Gradio interface automatidata_ga = gr.Interface(fn=automatidata, inputs=[ gr.Number(1, 2, label="VendorID - [1 or 2]"), gr.Number(0, 6, label="Passenger Count - [1 to 6]"), gr.Number(label="Distance in miles"), gr.Number(label="Duration in mins"), gr.Number(0, 1, label="Rush Hour - [0 or 1]") ], outputs="text", title="New York City Taxi and Limousine Commission (TLC) - Taxi Fares Estimator", examples = [ [2,1,2.33,15.09,0], [1,2,4.22,24.29,0], [1,1,0.71,6.66,0], [2,1,0.97,8.37,0], [2,3,1.48,8.92,0], ], description="Predicting Taxi Fare Amount Using Machine Learning.", theme='dark' ) automatidata_ga.launch(share=True)