|
import gradio as gr |
|
import pickle |
|
|
|
def read_pickle(path, saved_model_name:str): |
|
with open(path + saved_model_name + '.pickle', 'rb') as to_read: |
|
model = pickle.load(to_read) |
|
return model |
|
|
|
def automatidata(VendorID, passenger_count, Distance, Duration, rush_hour): |
|
inputs = [[VendorID, passenger_count, Distance, Duration, rush_hour]] |
|
prediction = model.predict(inputs) |
|
prediction_value = prediction[0][0] |
|
return f" Fare amount(approx.) = {round(prediction_value,2)} $" |
|
|
|
path = 'F:/Case study/Interview preparation/01.Project/1. Automatidata/Final/' |
|
model = read_pickle(path,'Automatidata_gui') |
|
|
|
automatidata_ga = gr.Interface(fn=automatidata, |
|
inputs = [ |
|
gr.Number(1,2, label="VendorID - [1, 2]"), |
|
gr.Number(0,6, label="Passenger Count"), |
|
gr.Number(label="Distance"), |
|
gr.Number(label="Duration"), |
|
gr.Number(0,1, label="Rush Hour") |
|
], |
|
outputs = "text",title="Taxi Fares Estimater", |
|
description="Predicting Taxi Fare Amount Using Machine Learning.", |
|
) |
|
|
|
if __name__ == "__main__": |
|
automatidata_ga.launch(share=True) |
|
|