Spaces:
Runtime error
Runtime error
import pickle | |
import gradio as gr | |
# Load the pickled model | |
with open('./Automatidata_gui.pickle', 'rb') as file: | |
model = pickle.load(file) | |
# Define the function for making predictions | |
def automatidata(VendorID, passenger_count, Distance, Duration, rush_hour): | |
inputs = [[VendorID, passenger_count, Distance, Duration, rush_hour]] | |
prediction = model.predict(inputs) | |
prediction_value = prediction[0][0] | |
return f"Fare amount(approx.) = {round(prediction_value, 2)} $" | |
# Create the Gradio interface | |
automatidata_ga = gr.Interface(fn=automatidata, | |
inputs=[ | |
gr.Number(1, 2, label="VendorID - [1 or 2]"), | |
gr.Number(0, 6, label="Passenger Count - [1 to 6]"), | |
gr.Number(label="Distance in miles"), | |
gr.Number(label="Duration in mins"), | |
gr.Number(0, 1, label="Rush Hour - [0 or 1]") | |
], | |
outputs="text", title="New York City Taxi and Limousine Commission (TLC) - Taxi Fares Estimator", | |
examples = [ | |
[2,1,2.33,15.09,0], | |
[1,2,4.22,24.29,0], | |
[1,1,0.71,6.66,0], | |
[2,1,0.97,8.37,0], | |
[2,3,1.48,8.92,0], | |
], | |
description="Predicting Taxi Fare Amount Using Machine Learning.", | |
theme='dark' | |
) | |
automatidata_ga.launch(share=True) | |