Spaces:
Runtime error
Runtime error
File size: 17,210 Bytes
886b6db 5edaec9 886b6db 25b5d1e 886b6db 3389e85 886b6db fe3ff5a 886b6db 25b5d1e 886b6db 3389e85 9578e95 886b6db 4fb501a 886b6db 3389e85 5edaec9 3389e85 886b6db 19ef1c2 ae608e6 886b6db 3389e85 886b6db 9578e95 886b6db 25b5d1e 3de913e 9578e95 3de913e 9578e95 886b6db 25b5d1e a1a4fb5 25b5d1e a1a4fb5 886b6db 3389e85 ae608e6 3389e85 886b6db 7ab4581 3389e85 a1a4fb5 f223697 a1a4fb5 25b5d1e ae608e6 25b5d1e 9578e95 3389e85 3de913e 3389e85 a34ba46 3389e85 886b6db 19ef1c2 886b6db 3389e85 886b6db 19ef1c2 886b6db 25b5d1e 886b6db 3389e85 a1a4fb5 886b6db 3389e85 886b6db 3389e85 886b6db 3389e85 886b6db 25b5d1e 886b6db 3389e85 9578e95 3389e85 57ba62f 5a68348 3389e85 5a68348 3389e85 25b5d1e 3389e85 9578e95 3389e85 9578e95 3389e85 886b6db 3389e85 a34ba46 886b6db 9578e95 ae608e6 886b6db ae608e6 886b6db 3389e85 886b6db 71a1779 ae608e6 71a1779 ae608e6 71a1779 ae608e6 886b6db 9578e95 886b6db 25b5d1e 886b6db 3389e85 886b6db 3389e85 886b6db 71a1779 ae608e6 886b6db ae608e6 886b6db 3389e85 886b6db 71a1779 ae608e6 71a1779 ae608e6 71a1779 ae608e6 886b6db 71a1779 886b6db 3389e85 25b5d1e fe3ff5a 886b6db fe3ff5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
"""=============
Example : extract_record.py
Author : Saifeddine ALOUI (ParisNeo)
Description :
Make sure you install deepface
pip install deepface
<================"""
import numpy as np
from pathlib import Path
import cv2
from numpy.lib.type_check import imag
from FaceAnalyzer import FaceAnalyzer
from pathlib import Path
import pickle
from deepface import DeepFace
# Number of images to use to build the embedding
nb_images=50
# Build face analyzer while specifying that we want to extract just a single face
fa = FaceAnalyzer(max_nb_faces=3)
box_colors=[
(255,0,0),
(0,255,0),
(0,0,255),
(255,255,0),
(255,0,255),
]
import gradio as gr
import numpy as np
class UI():
def __init__(self) -> None:
# If faces path is empty then make it
self.faces_path = Path(__file__).parent/"faces"
if not self.faces_path.exists():
self.faces_path.mkdir(parents=True, exist_ok=True)
self.i=0
self.embeddings_cloud = []
self.is_recording=False
self.face_name=None
self.nb_images = 20
self.nb_faces = 3
# Important to set. If higher than this distance, the face is considered unknown
self.threshold = 3e-1
self.faces_db_preprocessed_path = Path(__file__).parent/"faces_db_preprocessed"
self.current_name = None
self.current_face_files = []
self.draw_landmarks = True
self.webcam_process = False
self.upgrade_faces()
try:
DeepFace.represent(np.zeros((100,100,3)), enforce_detection=False)
except Exception as ex:
pass
with gr.Blocks() as demo:
self.faces = gr.State([])
self.distance_type = gr.State("cosine")
gr.Markdown("## FaceAnalyzer face recognition test")
with gr.Tabs():
with gr.TabItem('Image Recognize'):
with gr.Blocks():
with gr.Row():
with gr.Column():
self.rt_inp_img = gr.Image(label="Input Image")
with gr.Column():
self.rt_rec_img = gr.Image(label="Output Image")
self.rt_inp_img.change(self.process_image, inputs=self.rt_inp_img, outputs=self.rt_rec_img, show_progress=True)
with gr.TabItem('Add face from files'):
with gr.Blocks():
with gr.Row():
with gr.Column():
self.add_file = gr.Files(label="Files",file_types=["image"])
with gr.Row():
self.txtFace_name2 = gr.Textbox(label="face_name")
self.btn_start = gr.Button("Build face embeddings")
self.status = gr.Label(label="Status")
self.gallery = gr.Gallery(
label="Uploaded Images", show_label=True, height=300, elem_id="gallery", visible=False
).style(grid=[8], height="auto")
self.btn_clear = gr.Button("Clear Gallery")
self.btn_start.click(self.record_from_files, inputs=[self.gallery, self.txtFace_name2], outputs=self.status, show_progress=True)
self.btn_clear.click(self.clear_galery,[],[self.gallery, self.add_file])
self.add_file.change(self.add_files, self.add_file, [self.gallery, self.faces])
with gr.TabItem('Known Faces List'):
with gr.Blocks():
with gr.Row():
with gr.Column():
self.btn_reset_faces = gr.Button("clear faces list")
self.btn_get_known_faces_list = gr.Button("get known faces list")
self.faces_list_status = gr.Label(label="Status")
self.btn_reset_faces.click(self.clear_faces,[],[self.faces_list_status])
self.btn_get_known_faces_list.click(self.get_known_faces_list,[],[self.faces_list_status])
with gr.Row():
with gr.Accordion(label="Options", open=False):
self.sld_threshold = gr.Slider(1e-2,10,4e-1,step=1e-2,label="Recognition threshold")
self.sld_threshold.change(self.set_th,inputs=self.sld_threshold)
self.sld_nb_images = gr.Slider(2,50,20,label="Number of images")
self.sld_nb_images.change(self.set_nb_images, self.sld_nb_images)
self.cb_draw_landmarks = gr.Checkbox(label="Draw landmarks", value=True)
self.cb_draw_landmarks.change(self.set_draw_landmarks, self.cb_draw_landmarks)
self.sld_nb_faces = gr.Slider(1,50,3,label="Maximum number of faces")
self.sld_nb_faces.change(self.set_nb_faces, self.sld_nb_faces)
self.rd_distance_type = gr.Radio(
["cosine", "L1", "L2"], label="Distance", value="cosine"
)
self.rd_distance_type.change(self.change_distance, self.rd_distance_type, self.distance_type)
demo.queue().launch()
def get_known_faces_list(self):
return ", ".join(self.known_faces_names)
def clear_directory(self, directory_path):
"""
Recursively removes all files and subdirectories within the specified directory.
Args:
directory_path (str): The path to the directory to clear.
Returns:
None
"""
directory = Path(directory_path)
for item in directory.iterdir():
if item.is_file():
item.unlink()
elif item.is_dir():
self.clear_directory(item)
item.rmdir()
def clear_faces(self):
"""
clears faces
"""
self.clear_directory(self.faces_path)
self.upgrade_faces()
return "Faces removed"
def change_distance(self, type):
return self.distance_type.update(value=type)
def clear_galery(self):
return self.gallery.update(value=[]), self.add_file.update(value=[])
def start_webcam(self):
self.webcam_process=not self.webcam_process
return self.start_streaming.update(value="Stop webcam") if self.webcam_process else self.start_streaming.update(value="Start webcam")
def add_files(self, files):
current_face_files = []
if files is not None:
for file in files:
img = cv2.cvtColor(cv2.imread(file.name), cv2.COLOR_BGR2RGB)
current_face_files.append(img)
return current_face_files, current_face_files
else:
return []
def set_th(self, value):
self.threshold=value
def set_nb_images(self, value):
self.nb_images=value
def set_draw_landmarks(self, value):
self.draw_landmarks=value
def set_nb_faces(self,nb_faces):
self.nb_faces = nb_faces
fa.nb_faces = nb_faces
def cosine_distance(self, u, v):
"""
Computes the cosine distance between two vectors.
Parameters:
u (numpy array): A 1-dimensional numpy array representing the first vector.
v (numpy array): A 1-dimensional numpy array representing the second vector.
Returns:
float: The cosine distance between the two vectors.
"""
dot_product = np.dot(u, v)
norm_u = np.linalg.norm(u)
norm_v = np.linalg.norm(v)
return 1 - (dot_product / (norm_u * norm_v))
def upgrade_faces(self):
# Load faces
print("Reloading faces")
self.known_faces=[]
self.known_faces_names=[]
face_files = [f for f in self.faces_path.iterdir() if f.name.endswith("pkl")]
for file in face_files:
with open(str(file),"rb") as f:
finger_print = pickle.load(f)
self.known_faces.append(finger_print)
self.known_faces_names.append(file.stem)
# if hasattr(self, "faces_list"):
# self.faces_list.update(value=[[n] for n in self.known_faces_names])
def set_face_name(self, face_name):
self.face_name=face_name
return f"face name set to {self.face_name}"
def start_stop(self):
self.is_recording=True
def process_db(self, images):
for i,image in enumerate(images):
# Opencv uses BGR format while mediapipe uses RGB format. So we need to convert it to RGB before processing the image
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = cv2.resize(image, (640, 480))
# Process the image to extract faces and draw the masks on the face in the image
fa.process(image)
if fa.nb_faces>0:
if fa.nb_faces>1:
print("Found too many faces!!")
face = fa.faces[0]
try:
# Get a realigned version of the landmarksx
vertices = face.get_face_outer_vertices()
image = face.getFaceBox(image, vertices,margins=(30,30,30,30))
embedding = DeepFace.represent(image, enforce_detection=False)[0]["embedding"]
embeddings_cloud.append(embedding)
cv2.imwrite(str(self.faces_db_preprocessed_path/f"im_{i}.png"), cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
except Exception as ex:
print(ex)
embeddings_cloud = np.array(embeddings_cloud)
embeddings_cloud_mean = embeddings_cloud.mean(axis=0)
embeddings_cloud_inv_cov = np.linalg.inv(np.cov(embeddings_cloud.T))
# Now we save it.
# create a dialog box to ask for the subject name
name = self.face_name
with open(str(self.faces_path/f"{name}.pkl"),"wb") as f:
pickle.dump({"mean":embeddings_cloud_mean, "inv_cov":embeddings_cloud_inv_cov},f)
print(f"Saved {name}")
def record_from_files(self, images, face_name):
if face_name is None or face_name=="":
self.embeddings_cloud=[]
self.is_recording=False
return "Please input a face name"
if images is not None:
for entry in images:
print(f"Processing image {entry['name']}")
image = cv2.cvtColor(cv2.imread(entry["name"]), cv2.COLOR_BGR2RGB)
if image is None:
return None
# Process the image to extract faces and draw the masks on the face in the image
if image.shape[1]>640:
image = cv2.resize(image,(int(640*(image.shape[1]/image.shape[0])),640))
fa.image_size=(image.shape[1],image.shape[0],3)
# Process the image to extract faces and draw the masks on the face in the image
fa.process(image)
if fa.nb_faces>0:
print(f"Found {fa.nb_faces} faces")
try:
face = fa.faces[0]
vertices = face.get_face_outer_vertices()
image = face.getFaceBox(image, vertices, margins=(40,40,40,40))
embedding = DeepFace.represent(image, enforce_detection=False)[0]["embedding"]
self.embeddings_cloud.append(embedding)
self.i+=1
except Exception as ex:
print(ex)
# Now let's find out where the face lives inside the latent space (128 dimensions space)
embeddings_cloud = np.array(self.embeddings_cloud)
embeddings_cloud_mean = embeddings_cloud.mean(axis=0)
embeddings_cloud_inv_cov = embeddings_cloud.std(axis=0)
# Now we save it.
# create a dialog box to ask for the subject name
with open(str(self.faces_path/f"{face_name}.pkl"),"wb") as f:
pickle.dump({"mean":embeddings_cloud_mean, "inv_cov":embeddings_cloud_inv_cov},f)
print(f"Saved {face_name} embeddings")
self.i=0
self.embeddings_cloud=[]
self.is_recording=False
self.upgrade_faces()
return f"Saved {face_name} embeddings"
else:
return "Waiting"
def process_webcam(self, image):
if not self.webcam_process:
return None
fa.image_size=(640, 480, 3)
# Process the image to extract faces and draw the masks on the face in the image
fa.process(image)
if fa.nb_faces>0:
bboxes_and_names=[]
for j in range(fa.nb_faces):
try:
face = fa.faces[j]
vertices = face.get_face_outer_vertices()
face_image = face.getFaceBox(image, vertices, margins=(40,40,40,40))
embedding = DeepFace.represent(face_image, enforce_detection=False)[0]["embedding"]
if self.draw_landmarks:
face.draw_landmarks(image, color=(0,0,0))
nearest_distance = 1e100
nearest = 0
for i, known_face in enumerate(self.known_faces):
if self.distance_type.value == "cosine":
# Cosine distance
distance = self.cosine_distance(known_face["mean"], embedding)
elif self.distance_type.value =="L1":
# absolute distance
distance = np.abs(known_face["mean"]-embedding).sum()
elif self.distance_type.value == "L2":
# absolute distance
distance = np.sqrt(np.square(known_face["mean"]-embedding).sum())
if distance<nearest_distance:
nearest_distance = distance
nearest = i
bboxes_and_names.append([face.bounding_box, f"Unknown:{nearest_distance:.2e}" if nearest_distance>self.threshold else f"{self.known_faces_names[nearest]}:{nearest_distance:.2e}"])
except Exception as ex:
pass
if len(bboxes_and_names)>0:
image = fa.draw_names_on_bboxes(image,bboxes_and_names,upscale=2)
# Return the resulting frame
return image
def process_image(self, image):
if image is None:
return None
# Process the image to extract faces and draw the masks on the face in the image
if image.shape[1]>640:
image = cv2.resize(image,(int(640*(image.shape[1]/image.shape[0])),640))
fa.image_size=(image.shape[1],image.shape[0],3)
fa.process(image)
if fa.nb_faces>0:
bboxes_and_names=[]
for j in range(fa.nb_faces):
try:
face = fa.faces[j]
vertices = face.get_face_outer_vertices()
face_image = face.getFaceBox(image, vertices, margins=(40,40,40,40))
embedding = DeepFace.represent(face_image, enforce_detection=False)[0]["embedding"]
if self.draw_landmarks:
face.draw_landmarks(image, color=(0,0,0))
nearest_distance = 1e100
nearest = 0
for i, known_face in enumerate(self.known_faces):
if self.distance_type.value == "cosine":
# Cosine distance
distance = self.cosine_distance(known_face["mean"], embedding)
elif self.distance_type.value =="L1":
# absolute distance
distance = np.abs(known_face["mean"]-embedding).sum()
elif self.distance_type.value == "L2":
# absolute distance
distance = np.sqrt(np.square(known_face["mean"]-embedding).sum())
if distance<nearest_distance:
nearest_distance = distance
nearest = i
bboxes_and_names.append([face.bounding_box, f"Unknown:{nearest_distance:.2e}" if nearest_distance>self.threshold else f"{self.known_faces_names[nearest]}:{nearest_distance:.2e}"])
except Exception as ex:
image=face_image
if len(bboxes_and_names)>0:
image = fa.draw_names_on_bboxes(image,bboxes_and_names,upscale=2)
# Return the resulting frame
return image
ui = UI()
|