Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	
		paresh95
		
	commited on
		
		
					Commit 
							
							·
						
						7372611
	
1
								Parent(s):
							
							8811e6c
								
PS|WIP-facial texture
Browse files- app.py +2 -1
- cv_utils/facial_texture.py +77 -0
- data/images_symmetry/gigi_hadid.webp +0 -0
    	
        app.py
    CHANGED
    
    | @@ -1,10 +1,11 @@ | |
| 1 | 
             
            import gradio as gr
         | 
|  | |
| 2 |  | 
| 3 | 
             
            def identity_function(input_image):
         | 
| 4 | 
             
                return input_image
         | 
| 5 |  | 
| 6 | 
             
            iface = gr.Interface(
         | 
| 7 | 
            -
                fn= | 
| 8 | 
             
                inputs=gr.inputs.Image(type="pil"),
         | 
| 9 | 
             
                outputs=gr.outputs.Image(type="pil")
         | 
| 10 | 
             
            )
         | 
|  | |
| 1 | 
             
            import gradio as gr
         | 
| 2 | 
            +
            from cv_utils.facial_texture import compute_face_simplicity
         | 
| 3 |  | 
| 4 | 
             
            def identity_function(input_image):
         | 
| 5 | 
             
                return input_image
         | 
| 6 |  | 
| 7 | 
             
            iface = gr.Interface(
         | 
| 8 | 
            +
                fn=compute_face_simplicity,
         | 
| 9 | 
             
                inputs=gr.inputs.Image(type="pil"),
         | 
| 10 | 
             
                outputs=gr.outputs.Image(type="pil")
         | 
| 11 | 
             
            )
         | 
    	
        cv_utils/facial_texture.py
    ADDED
    
    | @@ -0,0 +1,77 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import cv2
         | 
| 2 | 
            +
            import numpy as np
         | 
| 3 | 
            +
            from skimage.feature import local_binary_pattern
         | 
| 4 | 
            +
            import matplotlib.pyplot as plt
         | 
| 5 | 
            +
            import dlib
         | 
| 6 | 
            +
            import imutils
         | 
| 7 | 
            +
            import os
         | 
| 8 | 
            +
            from PIL import Image
         | 
| 9 | 
            +
             | 
| 10 | 
            +
             | 
| 11 | 
            +
            def compute_face_simplicity(image):
         | 
| 12 | 
            +
                
         | 
| 13 | 
            +
                ######## create if or depending on input - filepath or PIL file
         | 
| 14 | 
            +
                # Load the image from a filepath
         | 
| 15 | 
            +
                # image = cv2.imread(image_path)
         | 
| 16 | 
            +
                
         | 
| 17 | 
            +
                # Convert RGB to BGR format (OpenCV uses BGR while PIL uses RGB)
         | 
| 18 | 
            +
                image_np = np.array(image)
         | 
| 19 | 
            +
                image = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
         | 
| 20 | 
            +
             | 
| 21 | 
            +
                # Resize the image
         | 
| 22 | 
            +
                image = imutils.resize(image, width=800)
         | 
| 23 | 
            +
             | 
| 24 | 
            +
                # Convert to grayscale
         | 
| 25 | 
            +
                gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
         | 
| 26 | 
            +
                
         | 
| 27 | 
            +
                detector = dlib.get_frontal_face_detector()
         | 
| 28 | 
            +
                predictor = dlib.shape_predictor("models/face_alignment/shape_predictor_68_face_landmarks.dat")
         | 
| 29 | 
            +
                
         | 
| 30 | 
            +
                # Detect the face in the image
         | 
| 31 | 
            +
                faces = detector(gray, 1)
         | 
| 32 | 
            +
                if len(faces) == 0:
         | 
| 33 | 
            +
                    return "No face detected."
         | 
| 34 | 
            +
             | 
| 35 | 
            +
                x, y, w, h = (faces[0].left(), faces[0].top(), faces[0].width(), faces[0].height())
         | 
| 36 | 
            +
                face_img = gray[y:y+h, x:x+w]
         | 
| 37 | 
            +
                
         | 
| 38 | 
            +
                
         | 
| 39 | 
            +
                # Parameters for LBP
         | 
| 40 | 
            +
                radius = 1
         | 
| 41 | 
            +
                n_points = 8 * radius
         | 
| 42 | 
            +
                
         | 
| 43 | 
            +
                # Apply LBP to the face region
         | 
| 44 | 
            +
                lbp = local_binary_pattern(face_img, n_points, radius, method="uniform")
         | 
| 45 | 
            +
                
         | 
| 46 | 
            +
                # Compute the histogram of the LBP
         | 
| 47 | 
            +
                hist, _ = np.histogram(lbp.ravel(), bins=np.arange(0, n_points + 3), range=(0, n_points + 2))
         | 
| 48 | 
            +
                
         | 
| 49 | 
            +
                # Measure the variance of the histogram
         | 
| 50 | 
            +
                variance = np.var(hist)
         | 
| 51 | 
            +
                std = np.sqrt(variance)
         | 
| 52 | 
            +
                print(std)
         | 
| 53 | 
            +
                
         | 
| 54 | 
            +
                # A hypothetical threshold - needs calibration
         | 
| 55 | 
            +
                threshold = 10000
         | 
| 56 | 
            +
                
         | 
| 57 | 
            +
                if std < threshold:
         | 
| 58 | 
            +
                    simplicity = "Simple"
         | 
| 59 | 
            +
                else:
         | 
| 60 | 
            +
                    simplicity = "Complex"
         | 
| 61 | 
            +
                
         | 
| 62 | 
            +
                # Visualizing the LBP pattern on the detected face
         | 
| 63 | 
            +
                # plt.imshow(lbp)
         | 
| 64 | 
            +
                lbp = (lbp * 255).astype(np.uint8)
         | 
| 65 | 
            +
                lbp = Image.fromarray(lbp)
         | 
| 66 | 
            +
                
         | 
| 67 | 
            +
                return lbp #, simplicity
         | 
| 68 | 
            +
             | 
| 69 | 
            +
             | 
| 70 | 
            +
            if __name__ == "__main__":
         | 
| 71 | 
            +
                print(os.getcwd())
         | 
| 72 | 
            +
                detector = dlib.get_frontal_face_detector()
         | 
| 73 | 
            +
                predictor = dlib.shape_predictor("models/face_alignment/shape_predictor_68_face_landmarks.dat")
         | 
| 74 | 
            +
                print(predictor)
         | 
| 75 | 
            +
                
         | 
| 76 | 
            +
                image_path = 'data/images_symmetry/gigi_hadid.webp'
         | 
| 77 | 
            +
                print(compute_face_simplicity(image_path))
         | 
    	
        data/images_symmetry/gigi_hadid.webp
    ADDED
    
    |   | 
