import os import cv2 os.system("hub install UGATIT_100w==1.0.0") import gradio as gr import paddlehub as hub import numpy as np from PIL import Image model = hub.Module(name='UGATIT_100w', use_gpu=False) def inference(image): #result = model.style_transfer(images=[cv2.imread(image.name)]) result = model.style_transfer(paths=[image.name]) print(type(result[0])) print(result[0]) return Image.fromarray(np.uint8(result[0])[:,:,::-1]).convert('RGB') title = "UGATIT-selfie2anime" description = "Gradio demo for UGATIT-selfie2anime. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." article = "

U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation | Github Repo

" examples=[['robert.png']] iface = gr.Interface(inference, inputs=gr.inputs.Image(type="file"), outputs=gr.outputs.Image(type="pil"),examples=examples,enable_queue=True,title=title,article=article,description=description) iface.launch()