Spaces:
Build error
Build error
import gradio as gr | |
import json | |
import math | |
import os | |
import toml | |
import time | |
from datetime import datetime | |
from .common_gui import ( | |
check_if_model_exist, | |
color_aug_changed, | |
create_refresh_button, | |
get_executable_path, | |
get_file_path, | |
get_saveasfile_path, | |
list_files, | |
output_message, | |
print_command_and_toml, | |
run_cmd_advanced_training, | |
SaveConfigFile, | |
scriptdir, | |
update_my_data, | |
validate_file_path, validate_folder_path, validate_model_path, | |
validate_args_setting, setup_environment, | |
) | |
from .class_accelerate_launch import AccelerateLaunch | |
from .class_configuration_file import ConfigurationFile | |
from .class_source_model import SourceModel | |
from .class_basic_training import BasicTraining | |
from .class_advanced_training import AdvancedTraining | |
from .class_folders import Folders | |
from .class_sdxl_parameters import SDXLParameters | |
from .class_command_executor import CommandExecutor | |
from .class_huggingface import HuggingFace | |
from .class_metadata import MetaData | |
from .class_tensorboard import TensorboardManager | |
from .dreambooth_folder_creation_gui import ( | |
gradio_dreambooth_folder_creation_tab, | |
) | |
from .dataset_balancing_gui import gradio_dataset_balancing_tab | |
from .class_sample_images import SampleImages, create_prompt_file | |
from .class_gui_config import KohyaSSGUIConfig | |
from .custom_logging import setup_logging | |
# Set up logging | |
log = setup_logging() | |
# Setup command executor | |
executor = None | |
# Setup huggingface | |
huggingface = None | |
use_shell = False | |
train_state_value = time.time() | |
def save_configuration( | |
save_as_bool, | |
file_path, | |
pretrained_model_name_or_path, | |
v2, | |
v_parameterization, | |
sdxl, | |
logging_dir, | |
train_data_dir, | |
reg_data_dir, | |
output_dir, | |
dataset_config, | |
max_resolution, | |
learning_rate, | |
lr_scheduler, | |
lr_warmup, | |
train_batch_size, | |
epoch, | |
save_every_n_epochs, | |
mixed_precision, | |
save_precision, | |
seed, | |
num_cpu_threads_per_process, | |
cache_latents, | |
cache_latents_to_disk, | |
caption_extension, | |
enable_bucket, | |
gradient_checkpointing, | |
full_fp16, | |
no_token_padding, | |
stop_text_encoder_training, | |
min_bucket_reso, | |
max_bucket_reso, | |
# use_8bit_adam, | |
xformers, | |
save_model_as, | |
shuffle_caption, | |
save_state, | |
save_state_on_train_end, | |
resume, | |
prior_loss_weight, | |
color_aug, | |
flip_aug, | |
clip_skip, | |
num_processes, | |
num_machines, | |
multi_gpu, | |
gpu_ids, | |
main_process_port, | |
vae, | |
dynamo_backend, | |
dynamo_mode, | |
dynamo_use_fullgraph, | |
dynamo_use_dynamic, | |
extra_accelerate_launch_args, | |
output_name, | |
max_token_length, | |
max_train_epochs, | |
max_data_loader_n_workers, | |
mem_eff_attn, | |
gradient_accumulation_steps, | |
model_list, | |
token_string, | |
init_word, | |
num_vectors_per_token, | |
max_train_steps, | |
weights, | |
template, | |
keep_tokens, | |
lr_scheduler_num_cycles, | |
lr_scheduler_power, | |
persistent_data_loader_workers, | |
bucket_no_upscale, | |
random_crop, | |
bucket_reso_steps, | |
v_pred_like_loss, | |
caption_dropout_every_n_epochs, | |
caption_dropout_rate, | |
optimizer, | |
optimizer_args, | |
lr_scheduler_args, | |
noise_offset_type, | |
noise_offset, | |
noise_offset_random_strength, | |
adaptive_noise_scale, | |
multires_noise_iterations, | |
multires_noise_discount, | |
ip_noise_gamma, | |
ip_noise_gamma_random_strength, | |
sample_every_n_steps, | |
sample_every_n_epochs, | |
sample_sampler, | |
sample_prompts, | |
additional_parameters, | |
loss_type, | |
huber_schedule, | |
huber_c, | |
vae_batch_size, | |
min_snr_gamma, | |
save_every_n_steps, | |
save_last_n_steps, | |
save_last_n_steps_state, | |
log_with, | |
wandb_api_key, | |
wandb_run_name, | |
log_tracker_name, | |
log_tracker_config, | |
scale_v_pred_loss_like_noise_pred, | |
min_timestep, | |
max_timestep, | |
sdxl_no_half_vae, | |
huggingface_repo_id, | |
huggingface_token, | |
huggingface_repo_type, | |
huggingface_repo_visibility, | |
huggingface_path_in_repo, | |
save_state_to_huggingface, | |
resume_from_huggingface, | |
async_upload, | |
metadata_author, | |
metadata_description, | |
metadata_license, | |
metadata_tags, | |
metadata_title, | |
): | |
# Get list of function parameters and values | |
parameters = list(locals().items()) | |
original_file_path = file_path | |
if save_as_bool: | |
log.info("Save as...") | |
file_path = get_saveasfile_path(file_path) | |
else: | |
log.info("Save...") | |
if file_path == None or file_path == "": | |
file_path = get_saveasfile_path(file_path) | |
# log.info(file_path) | |
if file_path == None or file_path == "": | |
return original_file_path # In case a file_path was provided and the user decide to cancel the open action | |
# Extract the destination directory from the file path | |
destination_directory = os.path.dirname(file_path) | |
# Create the destination directory if it doesn't exist | |
if not os.path.exists(destination_directory): | |
os.makedirs(destination_directory) | |
SaveConfigFile( | |
parameters=parameters, | |
file_path=file_path, | |
exclusion=["file_path", "save_as"], | |
) | |
return file_path | |
def open_configuration( | |
ask_for_file, | |
file_path, | |
pretrained_model_name_or_path, | |
v2, | |
v_parameterization, | |
sdxl, | |
logging_dir, | |
train_data_dir, | |
reg_data_dir, | |
output_dir, | |
dataset_config, | |
max_resolution, | |
learning_rate, | |
lr_scheduler, | |
lr_warmup, | |
train_batch_size, | |
epoch, | |
save_every_n_epochs, | |
mixed_precision, | |
save_precision, | |
seed, | |
num_cpu_threads_per_process, | |
cache_latents, | |
cache_latents_to_disk, | |
caption_extension, | |
enable_bucket, | |
gradient_checkpointing, | |
full_fp16, | |
no_token_padding, | |
stop_text_encoder_training, | |
min_bucket_reso, | |
max_bucket_reso, | |
# use_8bit_adam, | |
xformers, | |
save_model_as, | |
shuffle_caption, | |
save_state, | |
save_state_on_train_end, | |
resume, | |
prior_loss_weight, | |
color_aug, | |
flip_aug, | |
clip_skip, | |
num_processes, | |
num_machines, | |
multi_gpu, | |
gpu_ids, | |
main_process_port, | |
vae, | |
dynamo_backend, | |
dynamo_mode, | |
dynamo_use_fullgraph, | |
dynamo_use_dynamic, | |
extra_accelerate_launch_args, | |
output_name, | |
max_token_length, | |
max_train_epochs, | |
max_data_loader_n_workers, | |
mem_eff_attn, | |
gradient_accumulation_steps, | |
model_list, | |
token_string, | |
init_word, | |
num_vectors_per_token, | |
max_train_steps, | |
weights, | |
template, | |
keep_tokens, | |
lr_scheduler_num_cycles, | |
lr_scheduler_power, | |
persistent_data_loader_workers, | |
bucket_no_upscale, | |
random_crop, | |
bucket_reso_steps, | |
v_pred_like_loss, | |
caption_dropout_every_n_epochs, | |
caption_dropout_rate, | |
optimizer, | |
optimizer_args, | |
lr_scheduler_args, | |
noise_offset_type, | |
noise_offset, | |
noise_offset_random_strength, | |
adaptive_noise_scale, | |
multires_noise_iterations, | |
multires_noise_discount, | |
ip_noise_gamma, | |
ip_noise_gamma_random_strength, | |
sample_every_n_steps, | |
sample_every_n_epochs, | |
sample_sampler, | |
sample_prompts, | |
additional_parameters, | |
loss_type, | |
huber_schedule, | |
huber_c, | |
vae_batch_size, | |
min_snr_gamma, | |
save_every_n_steps, | |
save_last_n_steps, | |
save_last_n_steps_state, | |
log_with, | |
wandb_api_key, | |
wandb_run_name, | |
log_tracker_name, | |
log_tracker_config, | |
scale_v_pred_loss_like_noise_pred, | |
min_timestep, | |
max_timestep, | |
sdxl_no_half_vae, | |
huggingface_repo_id, | |
huggingface_token, | |
huggingface_repo_type, | |
huggingface_repo_visibility, | |
huggingface_path_in_repo, | |
save_state_to_huggingface, | |
resume_from_huggingface, | |
async_upload, | |
metadata_author, | |
metadata_description, | |
metadata_license, | |
metadata_tags, | |
metadata_title, | |
): | |
# Get list of function parameters and values | |
parameters = list(locals().items()) | |
original_file_path = file_path | |
if ask_for_file: | |
file_path = get_file_path(file_path) | |
if not file_path == "" and not file_path == None: | |
# load variables from JSON file | |
with open(file_path, "r", encoding="utf-8") as f: | |
my_data = json.load(f) | |
log.info("Loading config...") | |
# Update values to fix deprecated use_8bit_adam checkbox and set appropriate optimizer if it is set to True | |
my_data = update_my_data(my_data) | |
else: | |
file_path = original_file_path # In case a file_path was provided and the user decide to cancel the open action | |
my_data = {} | |
values = [file_path] | |
for key, value in parameters: | |
# Set the value in the dictionary to the corresponding value in `my_data`, or the default value if not found | |
if not key in ["ask_for_file", "file_path"]: | |
values.append(my_data.get(key, value)) | |
return tuple(values) | |
def train_model( | |
headless, | |
print_only, | |
pretrained_model_name_or_path, | |
v2, | |
v_parameterization, | |
sdxl, | |
logging_dir, | |
train_data_dir, | |
reg_data_dir, | |
output_dir, | |
dataset_config, | |
max_resolution, | |
learning_rate, | |
lr_scheduler, | |
lr_warmup, | |
train_batch_size, | |
epoch, | |
save_every_n_epochs, | |
mixed_precision, | |
save_precision, | |
seed, | |
num_cpu_threads_per_process, | |
cache_latents, | |
cache_latents_to_disk, | |
caption_extension, | |
enable_bucket, | |
gradient_checkpointing, | |
full_fp16, | |
no_token_padding, | |
stop_text_encoder_training_pct, | |
min_bucket_reso, | |
max_bucket_reso, | |
# use_8bit_adam, | |
xformers, | |
save_model_as, | |
shuffle_caption, | |
save_state, | |
save_state_on_train_end, | |
resume, | |
prior_loss_weight, | |
color_aug, | |
flip_aug, | |
clip_skip, | |
num_processes, | |
num_machines, | |
multi_gpu, | |
gpu_ids, | |
main_process_port, | |
vae, | |
dynamo_backend, | |
dynamo_mode, | |
dynamo_use_fullgraph, | |
dynamo_use_dynamic, | |
extra_accelerate_launch_args, | |
output_name, | |
max_token_length, | |
max_train_epochs, | |
max_data_loader_n_workers, | |
mem_eff_attn, | |
gradient_accumulation_steps, | |
model_list, # Keep this. Yes, it is unused here but required given the common list used | |
token_string, | |
init_word, | |
num_vectors_per_token, | |
max_train_steps, | |
weights, | |
template, | |
keep_tokens, | |
lr_scheduler_num_cycles, | |
lr_scheduler_power, | |
persistent_data_loader_workers, | |
bucket_no_upscale, | |
random_crop, | |
bucket_reso_steps, | |
v_pred_like_loss, | |
caption_dropout_every_n_epochs, | |
caption_dropout_rate, | |
optimizer, | |
optimizer_args, | |
lr_scheduler_args, | |
noise_offset_type, | |
noise_offset, | |
noise_offset_random_strength, | |
adaptive_noise_scale, | |
multires_noise_iterations, | |
multires_noise_discount, | |
ip_noise_gamma, | |
ip_noise_gamma_random_strength, | |
sample_every_n_steps, | |
sample_every_n_epochs, | |
sample_sampler, | |
sample_prompts, | |
additional_parameters, | |
loss_type, | |
huber_schedule, | |
huber_c, | |
vae_batch_size, | |
min_snr_gamma, | |
save_every_n_steps, | |
save_last_n_steps, | |
save_last_n_steps_state, | |
log_with, | |
wandb_api_key, | |
wandb_run_name, | |
log_tracker_name, | |
log_tracker_config, | |
scale_v_pred_loss_like_noise_pred, | |
min_timestep, | |
max_timestep, | |
sdxl_no_half_vae, | |
huggingface_repo_id, | |
huggingface_token, | |
huggingface_repo_type, | |
huggingface_repo_visibility, | |
huggingface_path_in_repo, | |
save_state_to_huggingface, | |
resume_from_huggingface, | |
async_upload, | |
metadata_author, | |
metadata_description, | |
metadata_license, | |
metadata_tags, | |
metadata_title, | |
): | |
# Get list of function parameters and values | |
parameters = list(locals().items()) | |
global train_state_value | |
TRAIN_BUTTON_VISIBLE = [ | |
gr.Button(visible=True), | |
gr.Button(visible=False or headless), | |
gr.Textbox(value=train_state_value), | |
] | |
if executor.is_running(): | |
log.error("Training is already running. Can't start another training session.") | |
return TRAIN_BUTTON_VISIBLE | |
log.info(f"Start training TI...") | |
log.info(f"Validating lr scheduler arguments...") | |
if not validate_args_setting(lr_scheduler_args): | |
return | |
log.info(f"Validating optimizer arguments...") | |
if not validate_args_setting(optimizer_args): | |
return | |
# | |
# Validate paths | |
# | |
if not validate_file_path(dataset_config): | |
return TRAIN_BUTTON_VISIBLE | |
if not validate_file_path(log_tracker_config): | |
return TRAIN_BUTTON_VISIBLE | |
if not validate_folder_path(logging_dir, can_be_written_to=True, create_if_not_exists=True): | |
return TRAIN_BUTTON_VISIBLE | |
if not validate_folder_path(output_dir, can_be_written_to=True, create_if_not_exists=True): | |
return TRAIN_BUTTON_VISIBLE | |
if not validate_model_path(pretrained_model_name_or_path): | |
return TRAIN_BUTTON_VISIBLE | |
if not validate_folder_path(reg_data_dir): | |
return TRAIN_BUTTON_VISIBLE | |
if not validate_folder_path(resume): | |
return TRAIN_BUTTON_VISIBLE | |
if not validate_folder_path(train_data_dir): | |
return TRAIN_BUTTON_VISIBLE | |
if not validate_model_path(vae): | |
return TRAIN_BUTTON_VISIBLE | |
# | |
# End of path validation | |
# | |
# if not validate_paths( | |
# dataset_config=dataset_config, | |
# headless=headless, | |
# log_tracker_config=log_tracker_config, | |
# logging_dir=logging_dir, | |
# output_dir=output_dir, | |
# pretrained_model_name_or_path=pretrained_model_name_or_path, | |
# reg_data_dir=reg_data_dir, | |
# resume=resume, | |
# train_data_dir=train_data_dir, | |
# vae=vae, | |
# ): | |
# return TRAIN_BUTTON_VISIBLE | |
if token_string == "": | |
output_message(msg="Token string is missing", headless=headless) | |
return TRAIN_BUTTON_VISIBLE | |
if init_word == "": | |
output_message(msg="Init word is missing", headless=headless) | |
return TRAIN_BUTTON_VISIBLE | |
if not print_only and check_if_model_exist( | |
output_name, output_dir, save_model_as, headless | |
): | |
return TRAIN_BUTTON_VISIBLE | |
if dataset_config: | |
log.info( | |
"Dataset config toml file used, skipping total_steps, train_batch_size, gradient_accumulation_steps, epoch, reg_factor, max_train_steps calculations..." | |
) | |
if max_train_steps > 0: | |
# calculate stop encoder training | |
if stop_text_encoder_training_pct == 0: | |
stop_text_encoder_training = 0 | |
else: | |
stop_text_encoder_training = math.ceil( | |
float(max_train_steps) / 100 * int(stop_text_encoder_training_pct) | |
) | |
if lr_warmup != 0: | |
lr_warmup_steps = round( | |
float(int(lr_warmup) * int(max_train_steps) / 100) | |
) | |
else: | |
lr_warmup_steps = 0 | |
else: | |
stop_text_encoder_training = 0 | |
lr_warmup_steps = 0 | |
if max_train_steps == 0: | |
max_train_steps_info = f"Max train steps: 0. sd-scripts will therefore default to 1600. Please specify a different value if required." | |
else: | |
max_train_steps_info = f"Max train steps: {max_train_steps}" | |
else: | |
if train_data_dir == "": | |
log.error("Train data dir is empty") | |
return TRAIN_BUTTON_VISIBLE | |
# Get a list of all subfolders in train_data_dir | |
subfolders = [ | |
f | |
for f in os.listdir(train_data_dir) | |
if os.path.isdir(os.path.join(train_data_dir, f)) | |
] | |
total_steps = 0 | |
# Loop through each subfolder and extract the number of repeats | |
for folder in subfolders: | |
try: | |
# Extract the number of repeats from the folder name | |
repeats = int(folder.split("_")[0]) | |
log.info(f"Folder {folder}: {repeats} repeats found") | |
# Count the number of images in the folder | |
num_images = len( | |
[ | |
f | |
for f, lower_f in ( | |
(file, file.lower()) | |
for file in os.listdir(os.path.join(train_data_dir, folder)) | |
) | |
if lower_f.endswith((".jpg", ".jpeg", ".png", ".webp")) | |
] | |
) | |
log.info(f"Folder {folder}: {num_images} images found") | |
# Calculate the total number of steps for this folder | |
steps = repeats * num_images | |
# log.info the result | |
log.info(f"Folder {folder}: {num_images} * {repeats} = {steps} steps") | |
total_steps += steps | |
except ValueError: | |
# Handle the case where the folder name does not contain an underscore | |
log.info( | |
f"Error: '{folder}' does not contain an underscore, skipping..." | |
) | |
if reg_data_dir == "": | |
reg_factor = 1 | |
else: | |
log.warning( | |
"Regularisation images are used... Will double the number of steps required..." | |
) | |
reg_factor = 2 | |
log.info(f"Regulatization factor: {reg_factor}") | |
if max_train_steps == 0: | |
# calculate max_train_steps | |
max_train_steps = int( | |
math.ceil( | |
float(total_steps) | |
/ int(train_batch_size) | |
/ int(gradient_accumulation_steps) | |
* int(epoch) | |
* int(reg_factor) | |
) | |
) | |
max_train_steps_info = f"max_train_steps ({total_steps} / {train_batch_size} / {gradient_accumulation_steps} * {epoch} * {reg_factor}) = {max_train_steps}" | |
else: | |
if max_train_steps == 0: | |
max_train_steps_info = f"Max train steps: 0. sd-scripts will therefore default to 1600. Please specify a different value if required." | |
else: | |
max_train_steps_info = f"Max train steps: {max_train_steps}" | |
# calculate stop encoder training | |
if stop_text_encoder_training_pct == 0: | |
stop_text_encoder_training = 0 | |
else: | |
stop_text_encoder_training = math.ceil( | |
float(max_train_steps) / 100 * int(stop_text_encoder_training_pct) | |
) | |
if lr_warmup != 0: | |
lr_warmup_steps = round(float(int(lr_warmup) * int(max_train_steps) / 100)) | |
else: | |
lr_warmup_steps = 0 | |
log.info(f"Total steps: {total_steps}") | |
log.info(f"Train batch size: {train_batch_size}") | |
log.info(f"Gradient accumulation steps: {gradient_accumulation_steps}") | |
log.info(f"Epoch: {epoch}") | |
log.info(max_train_steps_info) | |
log.info(f"stop_text_encoder_training = {stop_text_encoder_training}") | |
log.info(f"lr_warmup_steps = {lr_warmup_steps}") | |
accelerate_path = get_executable_path("accelerate") | |
if accelerate_path == "": | |
log.error("accelerate not found") | |
return TRAIN_BUTTON_VISIBLE | |
run_cmd = [rf'{accelerate_path}', "launch"] | |
run_cmd = AccelerateLaunch.run_cmd( | |
run_cmd=run_cmd, | |
dynamo_backend=dynamo_backend, | |
dynamo_mode=dynamo_mode, | |
dynamo_use_fullgraph=dynamo_use_fullgraph, | |
dynamo_use_dynamic=dynamo_use_dynamic, | |
num_processes=num_processes, | |
num_machines=num_machines, | |
multi_gpu=multi_gpu, | |
gpu_ids=gpu_ids, | |
main_process_port=main_process_port, | |
num_cpu_threads_per_process=num_cpu_threads_per_process, | |
mixed_precision=mixed_precision, | |
extra_accelerate_launch_args=extra_accelerate_launch_args, | |
) | |
if sdxl: | |
run_cmd.append(rf"{scriptdir}/sd-scripts/sdxl_train_textual_inversion.py") | |
else: | |
run_cmd.append(rf"{scriptdir}/sd-scripts/train_textual_inversion.py") | |
if max_data_loader_n_workers == "" or None: | |
max_data_loader_n_workers = 0 | |
else: | |
max_data_loader_n_workers = int(max_data_loader_n_workers) | |
if max_train_steps == "" or None: | |
max_train_steps = 0 | |
else: | |
max_train_steps = int(max_train_steps) | |
# def save_huggingface_to_toml(self, toml_file_path: str): | |
config_toml_data = { | |
# Update the values in the TOML data | |
"adaptive_noise_scale": ( | |
adaptive_noise_scale if adaptive_noise_scale != 0 else None | |
), | |
"async_upload": async_upload, | |
"bucket_no_upscale": bucket_no_upscale, | |
"bucket_reso_steps": bucket_reso_steps, | |
"cache_latents": cache_latents, | |
"cache_latents_to_disk": cache_latents_to_disk, | |
"caption_dropout_every_n_epochs": int(caption_dropout_every_n_epochs), | |
"caption_extension": caption_extension, | |
"clip_skip": clip_skip if clip_skip != 0 else None, | |
"color_aug": color_aug, | |
"dataset_config": dataset_config, | |
"dynamo_backend": dynamo_backend, | |
"enable_bucket": enable_bucket, | |
"epoch": int(epoch), | |
"flip_aug": flip_aug, | |
"full_fp16": full_fp16, | |
"gradient_accumulation_steps": int(gradient_accumulation_steps), | |
"gradient_checkpointing": gradient_checkpointing, | |
"huber_c": huber_c, | |
"huber_schedule": huber_schedule, | |
"huggingface_repo_id": huggingface_repo_id, | |
"huggingface_token": huggingface_token, | |
"huggingface_repo_type": huggingface_repo_type, | |
"huggingface_repo_visibility": huggingface_repo_visibility, | |
"huggingface_path_in_repo": huggingface_path_in_repo, | |
"init_word": init_word, | |
"ip_noise_gamma": ip_noise_gamma if ip_noise_gamma != 0 else None, | |
"ip_noise_gamma_random_strength": ip_noise_gamma_random_strength, | |
"keep_tokens": int(keep_tokens), | |
"learning_rate": learning_rate, | |
"logging_dir": logging_dir, | |
"log_tracker_name": log_tracker_name, | |
"log_tracker_config": log_tracker_config, | |
"loss_type": loss_type, | |
"lr_scheduler": lr_scheduler, | |
"lr_scheduler_args": str(lr_scheduler_args).replace('"', "").split(), | |
"lr_scheduler_num_cycles": ( | |
int(lr_scheduler_num_cycles) if lr_scheduler_num_cycles != "" else int(epoch) | |
), | |
"lr_scheduler_power": lr_scheduler_power, | |
"lr_warmup_steps": lr_warmup_steps, | |
"max_bucket_reso": max_bucket_reso, | |
"max_timestep": max_timestep if max_timestep != 0 else None, | |
"max_token_length": int(max_token_length), | |
"max_train_epochs": int(max_train_epochs) if int(max_train_epochs) != 0 else None, | |
"max_train_steps": int(max_train_steps) if int(max_train_steps) != 0 else None, | |
"mem_eff_attn": mem_eff_attn, | |
"metadata_author": metadata_author, | |
"metadata_description": metadata_description, | |
"metadata_license": metadata_license, | |
"metadata_tags": metadata_tags, | |
"metadata_title": metadata_title, | |
"min_bucket_reso": int(min_bucket_reso), | |
"min_snr_gamma": min_snr_gamma if min_snr_gamma != 0 else None, | |
"min_timestep": min_timestep if min_timestep != 0 else None, | |
"mixed_precision": mixed_precision, | |
"multires_noise_discount": multires_noise_discount, | |
"multires_noise_iterations": ( | |
multires_noise_iterations if multires_noise_iterations != 0 else None | |
), | |
"no_half_vae": sdxl_no_half_vae, | |
"no_token_padding": no_token_padding, | |
"noise_offset": noise_offset if noise_offset != 0 else None, | |
"noise_offset_random_strength": noise_offset_random_strength, | |
"noise_offset_type": noise_offset_type, | |
"num_vectors_per_token": int(num_vectors_per_token), | |
"optimizer_type": optimizer, | |
"optimizer_args": str(optimizer_args).replace('"', "").split(), | |
"output_dir": output_dir, | |
"output_name": output_name, | |
"persistent_data_loader_workers": int(persistent_data_loader_workers), | |
"pretrained_model_name_or_path": pretrained_model_name_or_path, | |
"prior_loss_weight": prior_loss_weight, | |
"random_crop": random_crop, | |
"reg_data_dir": reg_data_dir, | |
"resolution": max_resolution, | |
"resume": resume, | |
"resume_from_huggingface": resume_from_huggingface, | |
"sample_every_n_epochs": ( | |
sample_every_n_epochs if sample_every_n_epochs != 0 else None | |
), | |
"sample_every_n_steps": ( | |
sample_every_n_steps if sample_every_n_steps != 0 else None | |
), | |
"sample_prompts": create_prompt_file(sample_prompts, output_dir), | |
"sample_sampler": sample_sampler, | |
"save_every_n_epochs": ( | |
save_every_n_epochs if save_every_n_epochs != 0 else None | |
), | |
"save_every_n_steps": save_every_n_steps if save_every_n_steps != 0 else None, | |
"save_last_n_steps": save_last_n_steps if save_last_n_steps != 0 else None, | |
"save_last_n_steps_state": ( | |
save_last_n_steps_state if save_last_n_steps_state != 0 else None | |
), | |
"save_model_as": save_model_as, | |
"save_precision": save_precision, | |
"save_state": save_state, | |
"save_state_on_train_end": save_state_on_train_end, | |
"save_state_to_huggingface": save_state_to_huggingface, | |
"scale_v_pred_loss_like_noise_pred": scale_v_pred_loss_like_noise_pred, | |
"sdpa": True if xformers == "sdpa" else None, | |
"seed": int(seed) if int(seed) != 0 else None, | |
"shuffle_caption": shuffle_caption, | |
"stop_text_encoder_training": ( | |
stop_text_encoder_training if stop_text_encoder_training != 0 else None | |
), | |
"token_string": token_string, | |
"train_batch_size": train_batch_size, | |
"train_data_dir": train_data_dir, | |
"log_with": log_with, | |
"v2": v2, | |
"v_parameterization": v_parameterization, | |
"v_pred_like_loss": v_pred_like_loss if v_pred_like_loss != 0 else None, | |
"vae": vae, | |
"vae_batch_size": vae_batch_size if vae_batch_size != 0 else None, | |
"wandb_api_key": wandb_api_key, | |
"wandb_run_name": wandb_run_name, | |
"weigts": weights, | |
"use_object_template": True if template == "object template" else None, | |
"use_style_template": True if template == "style template" else None, | |
"xformers": True if xformers == "xformers" else None, | |
} | |
# Given dictionary `config_toml_data` | |
# Remove all values = "" | |
config_toml_data = { | |
key: value | |
for key, value in config_toml_data.items() | |
if value not in ["", False, None] | |
} | |
config_toml_data["max_data_loader_n_workers"] = int(max_data_loader_n_workers) | |
# Sort the dictionary by keys | |
config_toml_data = dict(sorted(config_toml_data.items())) | |
current_datetime = datetime.now() | |
formatted_datetime = current_datetime.strftime("%Y%m%d-%H%M%S") | |
tmpfilename = fr"{output_dir}/config_textual_inversion-{formatted_datetime}.toml" | |
# Save the updated TOML data back to the file | |
with open(tmpfilename, "w", encoding="utf-8") as toml_file: | |
toml.dump(config_toml_data, toml_file) | |
if not os.path.exists(toml_file.name): | |
log.error(f"Failed to write TOML file: {toml_file.name}") | |
run_cmd.append("--config_file") | |
run_cmd.append(rf"{tmpfilename}") | |
# Initialize a dictionary with always-included keyword arguments | |
kwargs_for_training = { | |
"additional_parameters": additional_parameters, | |
} | |
# Pass the dynamically constructed keyword arguments to the function | |
run_cmd = run_cmd_advanced_training(run_cmd=run_cmd, **kwargs_for_training) | |
if print_only: | |
print_command_and_toml(run_cmd, tmpfilename) | |
else: | |
# Saving config file for model | |
current_datetime = datetime.now() | |
formatted_datetime = current_datetime.strftime("%Y%m%d-%H%M%S") | |
# config_dir = os.path.dirname(os.path.dirname(train_data_dir)) | |
file_path = os.path.join(output_dir, f"{output_name}_{formatted_datetime}.json") | |
log.info(f"Saving training config to {file_path}...") | |
SaveConfigFile( | |
parameters=parameters, | |
file_path=file_path, | |
exclusion=["file_path", "save_as", "headless", "print_only"], | |
) | |
env = setup_environment() | |
# Run the command | |
executor.execute_command(run_cmd=run_cmd, env=env) | |
train_state_value = time.time() | |
return ( | |
gr.Button(visible=False or headless), | |
gr.Button(visible=True), | |
gr.Textbox(value=train_state_value), | |
) | |
def ti_tab( | |
headless=False, | |
default_output_dir=None, | |
config: KohyaSSGUIConfig = {}, | |
use_shell_flag: bool = False, | |
): | |
dummy_db_true = gr.Checkbox(value=True, visible=False) | |
dummy_db_false = gr.Checkbox(value=False, visible=False) | |
dummy_headless = gr.Checkbox(value=headless, visible=False) | |
global use_shell | |
use_shell = use_shell_flag | |
current_embedding_dir = ( | |
default_output_dir | |
if default_output_dir is not None and default_output_dir != "" | |
else os.path.join(scriptdir, "outputs") | |
) | |
with gr.Tab("Training"), gr.Column(variant="compact"): | |
gr.Markdown("Train a TI using kohya textual inversion python code...") | |
# Setup Configuration Files Gradio | |
with gr.Accordion("Configuration", open=False): | |
configuration = ConfigurationFile(headless=headless, config=config) | |
with gr.Accordion("Accelerate launch", open=False), gr.Column(): | |
accelerate_launch = AccelerateLaunch(config=config) | |
with gr.Column(): | |
source_model = SourceModel( | |
save_model_as_choices=[ | |
"ckpt", | |
"safetensors", | |
], | |
headless=headless, | |
config=config, | |
) | |
with gr.Accordion("Folders", open=False), gr.Group(): | |
folders = Folders(headless=headless, config=config) | |
with gr.Accordion("Metadata", open=False), gr.Group(): | |
metadata = MetaData(config=config) | |
with gr.Accordion("Dataset Preparation", open=False): | |
gr.Markdown( | |
"This section provide Dreambooth tools to help setup your dataset..." | |
) | |
gradio_dreambooth_folder_creation_tab( | |
train_data_dir_input=source_model.train_data_dir, | |
reg_data_dir_input=folders.reg_data_dir, | |
output_dir_input=folders.output_dir, | |
logging_dir_input=folders.logging_dir, | |
headless=headless, | |
config=config, | |
) | |
gradio_dataset_balancing_tab(headless=headless) | |
with gr.Accordion("Parameters", open=False), gr.Column(): | |
with gr.Accordion("Basic", open="True"): | |
with gr.Group(elem_id="basic_tab"): | |
with gr.Row(): | |
def list_embedding_files(path): | |
nonlocal current_embedding_dir | |
current_embedding_dir = path | |
return list( | |
list_files( | |
path, | |
exts=[".pt", ".ckpt", ".safetensors"], | |
all=True, | |
) | |
) | |
weights = gr.Dropdown( | |
label="Resume TI training (Optional. Path to existing TI embedding file to keep training)", | |
choices=[""] + list_embedding_files(current_embedding_dir), | |
value="", | |
interactive=True, | |
allow_custom_value=True, | |
) | |
create_refresh_button( | |
weights, | |
lambda: None, | |
lambda: { | |
"choices": list_embedding_files(current_embedding_dir) | |
}, | |
"open_folder_small", | |
) | |
weights_file_input = gr.Button( | |
"📂", | |
elem_id="open_folder_small", | |
elem_classes=["tool"], | |
visible=(not headless), | |
) | |
weights_file_input.click( | |
get_file_path, | |
outputs=weights, | |
show_progress=False, | |
) | |
weights.change( | |
fn=lambda path: gr.Dropdown( | |
choices=[""] + list_embedding_files(path) | |
), | |
inputs=weights, | |
outputs=weights, | |
show_progress=False, | |
) | |
with gr.Row(): | |
token_string = gr.Textbox( | |
label="Token string", | |
placeholder="eg: cat", | |
) | |
init_word = gr.Textbox( | |
label="Init word", | |
value="*", | |
) | |
num_vectors_per_token = gr.Slider( | |
minimum=1, | |
maximum=75, | |
value=1, | |
step=1, | |
label="Vectors", | |
) | |
# max_train_steps = gr.Textbox( | |
# label='Max train steps', | |
# placeholder='(Optional) Maximum number of steps', | |
# ) | |
template = gr.Dropdown( | |
label="Template", | |
choices=[ | |
"caption", | |
"object template", | |
"style template", | |
], | |
value="caption", | |
) | |
basic_training = BasicTraining( | |
learning_rate_value=1e-5, | |
lr_scheduler_value="cosine", | |
lr_warmup_value=10, | |
sdxl_checkbox=source_model.sdxl_checkbox, | |
config=config, | |
) | |
# Add SDXL Parameters | |
sdxl_params = SDXLParameters( | |
source_model.sdxl_checkbox, | |
show_sdxl_cache_text_encoder_outputs=False, | |
config=config, | |
) | |
with gr.Accordion("Advanced", open=False, elem_id="advanced_tab"): | |
advanced_training = AdvancedTraining(headless=headless, config=config) | |
advanced_training.color_aug.change( | |
color_aug_changed, | |
inputs=[advanced_training.color_aug], | |
outputs=[basic_training.cache_latents], | |
) | |
with gr.Accordion("Samples", open=False, elem_id="samples_tab"): | |
sample = SampleImages(config=config) | |
global huggingface | |
with gr.Accordion("HuggingFace", open=False): | |
huggingface = HuggingFace(config=config) | |
global executor | |
executor = CommandExecutor(headless=headless) | |
with gr.Column(), gr.Group(): | |
with gr.Row(): | |
button_print = gr.Button("Print training command") | |
# Setup gradio tensorboard buttons | |
TensorboardManager(headless=headless, logging_dir=folders.logging_dir) | |
settings_list = [ | |
source_model.pretrained_model_name_or_path, | |
source_model.v2, | |
source_model.v_parameterization, | |
source_model.sdxl_checkbox, | |
folders.logging_dir, | |
source_model.train_data_dir, | |
folders.reg_data_dir, | |
folders.output_dir, | |
source_model.dataset_config, | |
basic_training.max_resolution, | |
basic_training.learning_rate, | |
basic_training.lr_scheduler, | |
basic_training.lr_warmup, | |
basic_training.train_batch_size, | |
basic_training.epoch, | |
basic_training.save_every_n_epochs, | |
accelerate_launch.mixed_precision, | |
source_model.save_precision, | |
basic_training.seed, | |
accelerate_launch.num_cpu_threads_per_process, | |
basic_training.cache_latents, | |
basic_training.cache_latents_to_disk, | |
basic_training.caption_extension, | |
basic_training.enable_bucket, | |
advanced_training.gradient_checkpointing, | |
advanced_training.full_fp16, | |
advanced_training.no_token_padding, | |
basic_training.stop_text_encoder_training, | |
basic_training.min_bucket_reso, | |
basic_training.max_bucket_reso, | |
advanced_training.xformers, | |
source_model.save_model_as, | |
advanced_training.shuffle_caption, | |
advanced_training.save_state, | |
advanced_training.save_state_on_train_end, | |
advanced_training.resume, | |
advanced_training.prior_loss_weight, | |
advanced_training.color_aug, | |
advanced_training.flip_aug, | |
advanced_training.clip_skip, | |
accelerate_launch.num_processes, | |
accelerate_launch.num_machines, | |
accelerate_launch.multi_gpu, | |
accelerate_launch.gpu_ids, | |
accelerate_launch.main_process_port, | |
advanced_training.vae, | |
accelerate_launch.dynamo_backend, | |
accelerate_launch.dynamo_mode, | |
accelerate_launch.dynamo_use_fullgraph, | |
accelerate_launch.dynamo_use_dynamic, | |
accelerate_launch.extra_accelerate_launch_args, | |
source_model.output_name, | |
advanced_training.max_token_length, | |
basic_training.max_train_epochs, | |
advanced_training.max_data_loader_n_workers, | |
advanced_training.mem_eff_attn, | |
advanced_training.gradient_accumulation_steps, | |
source_model.model_list, | |
token_string, | |
init_word, | |
num_vectors_per_token, | |
basic_training.max_train_steps, | |
weights, | |
template, | |
advanced_training.keep_tokens, | |
basic_training.lr_scheduler_num_cycles, | |
basic_training.lr_scheduler_power, | |
advanced_training.persistent_data_loader_workers, | |
advanced_training.bucket_no_upscale, | |
advanced_training.random_crop, | |
advanced_training.bucket_reso_steps, | |
advanced_training.v_pred_like_loss, | |
advanced_training.caption_dropout_every_n_epochs, | |
advanced_training.caption_dropout_rate, | |
basic_training.optimizer, | |
basic_training.optimizer_args, | |
basic_training.lr_scheduler_args, | |
advanced_training.noise_offset_type, | |
advanced_training.noise_offset, | |
advanced_training.noise_offset_random_strength, | |
advanced_training.adaptive_noise_scale, | |
advanced_training.multires_noise_iterations, | |
advanced_training.multires_noise_discount, | |
advanced_training.ip_noise_gamma, | |
advanced_training.ip_noise_gamma_random_strength, | |
sample.sample_every_n_steps, | |
sample.sample_every_n_epochs, | |
sample.sample_sampler, | |
sample.sample_prompts, | |
advanced_training.additional_parameters, | |
advanced_training.loss_type, | |
advanced_training.huber_schedule, | |
advanced_training.huber_c, | |
advanced_training.vae_batch_size, | |
advanced_training.min_snr_gamma, | |
advanced_training.save_every_n_steps, | |
advanced_training.save_last_n_steps, | |
advanced_training.save_last_n_steps_state, | |
advanced_training.log_with, | |
advanced_training.wandb_api_key, | |
advanced_training.wandb_run_name, | |
advanced_training.log_tracker_name, | |
advanced_training.log_tracker_config, | |
advanced_training.scale_v_pred_loss_like_noise_pred, | |
advanced_training.min_timestep, | |
advanced_training.max_timestep, | |
sdxl_params.sdxl_no_half_vae, | |
huggingface.huggingface_repo_id, | |
huggingface.huggingface_token, | |
huggingface.huggingface_repo_type, | |
huggingface.huggingface_repo_visibility, | |
huggingface.huggingface_path_in_repo, | |
huggingface.save_state_to_huggingface, | |
huggingface.resume_from_huggingface, | |
huggingface.async_upload, | |
metadata.metadata_author, | |
metadata.metadata_description, | |
metadata.metadata_license, | |
metadata.metadata_tags, | |
metadata.metadata_title, | |
] | |
configuration.button_open_config.click( | |
open_configuration, | |
inputs=[dummy_db_true, configuration.config_file_name] + settings_list, | |
outputs=[configuration.config_file_name] + settings_list, | |
show_progress=False, | |
) | |
configuration.button_load_config.click( | |
open_configuration, | |
inputs=[dummy_db_false, configuration.config_file_name] + settings_list, | |
outputs=[configuration.config_file_name] + settings_list, | |
show_progress=False, | |
) | |
configuration.button_save_config.click( | |
save_configuration, | |
inputs=[dummy_db_false, configuration.config_file_name] + settings_list, | |
outputs=[configuration.config_file_name], | |
show_progress=False, | |
) | |
run_state = gr.Textbox(value=train_state_value, visible=False) | |
run_state.change( | |
fn=executor.wait_for_training_to_end, | |
outputs=[executor.button_run, executor.button_stop_training], | |
) | |
executor.button_run.click( | |
train_model, | |
inputs=[dummy_headless] + [dummy_db_false] + settings_list, | |
outputs=[executor.button_run, executor.button_stop_training, run_state], | |
show_progress=False, | |
) | |
executor.button_stop_training.click( | |
executor.kill_command, outputs=[executor.button_run, executor.button_stop_training] | |
) | |
button_print.click( | |
train_model, | |
inputs=[dummy_headless] + [dummy_db_true] + settings_list, | |
show_progress=False, | |
) | |
return ( | |
source_model.train_data_dir, | |
folders.reg_data_dir, | |
folders.output_dir, | |
folders.logging_dir, | |
) | |