ITLT_Journal / finetunning.py
POMAHSLS's picture
Upload folder using huggingface_hub
ce03d07 verified
import re
import os
import transformers
import torch
from transformers import TextDataset, DataCollatorForLanguageModeling
from transformers import GPT2Tokenizer, GPT2LMHeadModel
from transformers import Trainer, TrainingArguments
print(torch.cuda.is_available())
def load_dataset(file_path, tokenizer, block_size=128):
dataset = TextDataset(
tokenizer=tokenizer,
file_path=file_path,
block_size=block_size,
)
return dataset
def load_data_collator(tokenizer, mlm=False):
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer,
mlm=mlm,
)
return data_collator
def train(train_file_path, model_name, output_dir, overwrite_output_dir,
per_device_train_batch_size, num_train_epochs, save_steps, resume_from_checkpoint):
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("malteos/gpt2-uk")
train_dataset = load_dataset(train_file_path, tokenizer)
data_collator = load_data_collator(tokenizer)
tokenizer.save_pretrained(output_dir)
model = AutoModelForCausalLM.from_pretrained("malteos/gpt2-uk")
model.save_pretrained(output_dir)
training_args = TrainingArguments(
output_dir=output_dir,
overwrite_output_dir=overwrite_output_dir,
per_device_train_batch_size=per_device_train_batch_size,
num_train_epochs=num_train_epochs,
)
trainer = Trainer(
model=model,
args=training_args,
data_collator=data_collator,
train_dataset=train_dataset,
)
trainer.train(resume_from_checkpoint=resume_from_checkpoint)
trainer.save_model()
train_directory = 'H:/Finetunning/q_and_a'
train_file_path = 'H:/Finetunning/journal.txt'
model_name = train_directory
output_dir = 'H:/Finetunning/custom_full_text'
overwrite_output_dir = False
per_device_train_batch_size = 8
num_train_epochs = 51
save_steps = 50000
print("Починаємо навчання...")
train(
train_file_path=train_file_path,
model_name=model_name,
output_dir=output_dir,
overwrite_output_dir=overwrite_output_dir,
per_device_train_batch_size=per_device_train_batch_size,
num_train_epochs=num_train_epochs,
save_steps=save_steps,
resume_from_checkpoint=True # False для першого разу, True - з якоїсь точки остановки
)