File size: 2,881 Bytes
5ea1b6f
2e0c5aa
5ea1b6f
 
 
ede25fc
2e0c5aa
5ea1b6f
2e121c3
2e0c5aa
 
ede25fc
5ea1b6f
 
 
ede25fc
2e0c5aa
 
 
ede25fc
5ea1b6f
ede25fc
5ea1b6f
ede25fc
e2ad235
ede25fc
 
 
 
 
 
 
5ea1b6f
 
2e0c5aa
 
 
 
 
 
 
 
 
 
 
 
d9403e1
 
 
 
 
 
 
27ec183
e7895e8
 
 
 
65555e4
2e0c5aa
 
 
 
65555e4
 
 
2e0c5aa
 
65555e4
 
2e0c5aa
 
65555e4
 
2e0c5aa
65555e4
2e0c5aa
65555e4
2e0c5aa
1036858
5ea1b6f
 
2e0c5aa
5ea1b6f
2e0c5aa
5ea1b6f
 
 
 
 
d9403e1
5ea1b6f
 
 
 
4629515
5ea1b6f
 
 
 
ede25fc
 
5ea1b6f
ede25fc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import gradio as gr
# import pickle
# from datasets import load_from_disk
from plaid.containers.sample import Sample
# import pyvista as pv

import numpy as np
import pyrender
from trimesh import Trimesh
import matplotlib as mpl
import matplotlib.cm as cm

import os
# switch to "osmesa" or "egl" before loading pyrender
os.environ["PYOPENGL_PLATFORM"] = "egl"


os.system("wget https://zenodo.org/records/10124594/files/Tensile2d.tar.gz")
os.system("tar -xvf Tensile2d.tar.gz")

# FOLDER = "plot"

# dataset = load_from_disk("Rotor37")

field_names_train = ["sig11", "sig22", "sig12", "U1", "U2", "q"]







def sample_info(sample_id_str, fieldn):

    plaid_sample = Sample.load_from_dir(f"Tensile2d/dataset/samples/sample_"+str(sample_id_str).zfill(9))
    nodes = plaid_sample.get_nodes()
    field = plaid_sample.get_field(fieldn)
    if nodes.shape[1] == 2:
        nodes__ = np.zeros((nodes.shape[0],nodes.shape[1]+1))
        nodes__[:,:-1] = nodes
        nodes = nodes__


    triangles = plaid_sample.get_elements()['TRI_3']

    # generate colormap
    if np.linalg.norm(field) > 0:
        norm = mpl.colors.Normalize(vmin=np.min(field), vmax=np.max(field))
        cmap = cm.coolwarm
        m = cm.ScalarMappable(norm=norm, cmap=cmap)
    
        vertex_colors = m.to_rgba(field)[:,:3]
    else:
        vertex_colors = 1+np.zeros((field.shape[0], 3))
        vertex_colors[:,0] = 0.2298057
        vertex_colors[:,1] = 0.01555616
        vertex_colors[:,2] = 0.15023281

    # generate mesh
    trimesh = Trimesh(vertices = nodes, faces = triangles)
    trimesh.visual.vertex_colors = vertex_colors
    mesh = pyrender.Mesh.from_trimesh(trimesh, smooth=False)

    # compose scene
    scene = pyrender.Scene(ambient_light=[.1, .1, .3], bg_color=[0, 0, 0])
    camera = pyrender.PerspectiveCamera( yfov=np.pi / 3.0)
    light = pyrender.DirectionalLight(color=[1,1,1], intensity=1000.)

    scene.add(mesh, pose=  np.eye(4))
    scene.add(light, pose=  np.eye(4))

    c = 3**-0.5
    scene.add(camera, pose=[[ 1,  0,  0,  0],
                            [ 0,  c, -c, -2],
                            [ 0,  c,  c,  1.2],
                            [ 0,  0,  0,  1]])

    # render scene
    r = pyrender.OffscreenRenderer(1024, 1024)
    color, _ = r.render(scene)
    

    str__ = f"loading sample {sample_id_str}"

    return str__, color


if __name__ == "__main__":

    with gr.Blocks() as demo:
        d1 = gr.Slider(0, 499, value=0, label="Training sample id", info="Choose between 0 and 499")
        d2 = gr.Dropdown(field_names_train, value=field_names_train[0], label="Field name")


        output1 = gr.Text(label="Training sample info")
        output2 = gr.Image(label="Training sample visualization")


        d1.input(sample_info, [d1, d2], [output1, output2])
        d2.input(sample_info, [d1, d2], [output1, output2]) 


    demo.launch()