Spaces:
Running
Running
File size: 2,881 Bytes
5ea1b6f 2e0c5aa 5ea1b6f ede25fc 2e0c5aa 5ea1b6f 2e121c3 2e0c5aa ede25fc 5ea1b6f ede25fc 2e0c5aa ede25fc 5ea1b6f ede25fc 5ea1b6f ede25fc e2ad235 ede25fc 5ea1b6f 2e0c5aa d9403e1 27ec183 e7895e8 65555e4 2e0c5aa 65555e4 2e0c5aa 65555e4 2e0c5aa 65555e4 2e0c5aa 65555e4 2e0c5aa 65555e4 2e0c5aa 1036858 5ea1b6f 2e0c5aa 5ea1b6f 2e0c5aa 5ea1b6f d9403e1 5ea1b6f 4629515 5ea1b6f ede25fc 5ea1b6f ede25fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
import gradio as gr
# import pickle
# from datasets import load_from_disk
from plaid.containers.sample import Sample
# import pyvista as pv
import numpy as np
import pyrender
from trimesh import Trimesh
import matplotlib as mpl
import matplotlib.cm as cm
import os
# switch to "osmesa" or "egl" before loading pyrender
os.environ["PYOPENGL_PLATFORM"] = "egl"
os.system("wget https://zenodo.org/records/10124594/files/Tensile2d.tar.gz")
os.system("tar -xvf Tensile2d.tar.gz")
# FOLDER = "plot"
# dataset = load_from_disk("Rotor37")
field_names_train = ["sig11", "sig22", "sig12", "U1", "U2", "q"]
def sample_info(sample_id_str, fieldn):
plaid_sample = Sample.load_from_dir(f"Tensile2d/dataset/samples/sample_"+str(sample_id_str).zfill(9))
nodes = plaid_sample.get_nodes()
field = plaid_sample.get_field(fieldn)
if nodes.shape[1] == 2:
nodes__ = np.zeros((nodes.shape[0],nodes.shape[1]+1))
nodes__[:,:-1] = nodes
nodes = nodes__
triangles = plaid_sample.get_elements()['TRI_3']
# generate colormap
if np.linalg.norm(field) > 0:
norm = mpl.colors.Normalize(vmin=np.min(field), vmax=np.max(field))
cmap = cm.coolwarm
m = cm.ScalarMappable(norm=norm, cmap=cmap)
vertex_colors = m.to_rgba(field)[:,:3]
else:
vertex_colors = 1+np.zeros((field.shape[0], 3))
vertex_colors[:,0] = 0.2298057
vertex_colors[:,1] = 0.01555616
vertex_colors[:,2] = 0.15023281
# generate mesh
trimesh = Trimesh(vertices = nodes, faces = triangles)
trimesh.visual.vertex_colors = vertex_colors
mesh = pyrender.Mesh.from_trimesh(trimesh, smooth=False)
# compose scene
scene = pyrender.Scene(ambient_light=[.1, .1, .3], bg_color=[0, 0, 0])
camera = pyrender.PerspectiveCamera( yfov=np.pi / 3.0)
light = pyrender.DirectionalLight(color=[1,1,1], intensity=1000.)
scene.add(mesh, pose= np.eye(4))
scene.add(light, pose= np.eye(4))
c = 3**-0.5
scene.add(camera, pose=[[ 1, 0, 0, 0],
[ 0, c, -c, -2],
[ 0, c, c, 1.2],
[ 0, 0, 0, 1]])
# render scene
r = pyrender.OffscreenRenderer(1024, 1024)
color, _ = r.render(scene)
str__ = f"loading sample {sample_id_str}"
return str__, color
if __name__ == "__main__":
with gr.Blocks() as demo:
d1 = gr.Slider(0, 499, value=0, label="Training sample id", info="Choose between 0 and 499")
d2 = gr.Dropdown(field_names_train, value=field_names_train[0], label="Field name")
output1 = gr.Text(label="Training sample info")
output2 = gr.Image(label="Training sample visualization")
d1.input(sample_info, [d1, d2], [output1, output2])
d2.input(sample_info, [d1, d2], [output1, output2])
demo.launch()
|