Spaces:
Runtime error
Runtime error
""" | |
Beam Search | |
=============== | |
""" | |
import numpy as np | |
from textattack.goal_function_results import GoalFunctionResultStatus | |
from textattack.search_methods import SearchMethod | |
class BeamSearch(SearchMethod): | |
"""An attack that maintains a beam of the `beam_width` highest scoring | |
AttackedTexts, greedily updating the beam with the highest scoring | |
transformations from the current beam. | |
Args: | |
goal_function: A function for determining how well a perturbation is doing at achieving the attack's goal. | |
transformation: The type of transformation. | |
beam_width (int): the number of candidates to retain at each step | |
""" | |
def __init__(self, beam_width=8): | |
self.beam_width = beam_width | |
def perform_search(self, initial_result): | |
beam = [initial_result.attacked_text] | |
best_result = initial_result | |
while not best_result.goal_status == GoalFunctionResultStatus.SUCCEEDED: | |
potential_next_beam = [] | |
for text in beam: | |
transformations = self.get_transformations( | |
text, original_text=initial_result.attacked_text | |
) | |
potential_next_beam += transformations | |
if len(potential_next_beam) == 0: | |
# If we did not find any possible perturbations, give up. | |
return best_result | |
results, search_over = self.get_goal_results(potential_next_beam) | |
scores = np.array([r.score for r in results]) | |
best_result = results[scores.argmax()] | |
if search_over: | |
return best_result | |
# Refill the beam. This works by sorting the scores | |
# in descending order and filling the beam from there. | |
best_indices = (-scores).argsort()[: self.beam_width] | |
beam = [potential_next_beam[i] for i in best_indices] | |
return best_result | |
def is_black_box(self): | |
return True | |
def extra_repr_keys(self): | |
return ["beam_width"] | |