import os import numpy as np import gradio as gr import torch from torchvision import models, transforms from PIL import Image # -- install detectron2 from source ------------------------------------------------------------------------------ os.system('pip install git+https://github.com/facebookresearch/detectron2.git') os.system('pip install pyyaml==5.1') import detectron2 from detectron2.utils.logger import setup_logger from detectron2 import model_zoo from detectron2.engine import DefaultPredictor from detectron2.config import get_cfg from detectron2.utils.visualizer import Visualizer from detectron2.data import MetadataCatalog, DatasetCatalog import cv2 setup_logger() # -- load rcnn model --------------------------------------------------------------------------------------------- cfg = get_cfg() # load model config cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")) cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 # set threshold for this model # set model weights cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml") cfg.MODEL.DEVICE= 'cpu' # move to cpu predictor = DefaultPredictor(cfg) # create model # -- load design modernity model for classification -------------------------------------------------------------- DesignModernityModel = torch.load("DesignModernityModelBonus.pt") DesignModernityModel.eval() # set state of the model to inference # Set class labels LABELS = ['2000-2003', '2004-2006', '2007-2009', '2010-2012', '2013-2015', '2016-2019'] n_labels = len(LABELS) # define maƩan and std dev for normalization MEAN = [0.485, 0.456, 0.406] STD = [0.229, 0.224, 0.225] # define image transformation steps carTransforms = transforms.Compose([transforms.Resize(224), transforms.ToTensor(), transforms.Normalize(mean=MEAN, std=STD)]) # -- define a function for extraction of the detected car --------------------------------------------------------- def cropImage(outputs, im, boxes, car_class_true): # Get the masks masks = list(np.array(outputs["instances"].pred_masks[car_class_true])) max_idx = torch.tensor([(x[2] - x[0])*(x[3] - x[1]) for x in boxes]).argmax().item() # Pick an item to mask item_mask = masks[max_idx] # Get the true bounding box of the mask segmentation = np.where(item_mask == True) # return a list of different position in the bow, which are the actual detected object x_min = int(np.min(segmentation[1])) # minimum x position x_max = int(np.max(segmentation[1])) y_min = int(np.min(segmentation[0])) y_max = int(np.max(segmentation[0])) # Create cropped image from the just portion of the image we want cropped = Image.fromarray(im[y_min:y_max, x_min:x_max, :], mode = 'RGB') # Create a PIL Image out of the mask mask = Image.fromarray((item_mask * 255).astype('uint8')) ###### change 255 # Crop the mask to match the cropped image cropped_mask = mask.crop((x_min, y_min, x_max, y_max)) # Load in a background image and choose a paste position height = y_max-y_min width = x_max-x_min background = Image.new(mode='RGB', size=(width, height), color=(255, 255, 255, 0)) # Create a new foreground image as large as the composite and paste the cropped image on top new_fg_image = Image.new('RGB', background.size) new_fg_image.paste(cropped) # Create a new alpha mask as large as the composite and paste the cropped mask new_alpha_mask = Image.new('L', background.size, color=0) new_alpha_mask.paste(cropped_mask) #composite the foreground and background using the alpha mask composite = Image.composite(new_fg_image, background, new_alpha_mask) return composite # -- define function for image segmentation and classification -------------------------------------------------------- def classifyCar(im): # read image #im = cv2.imread(im) # perform segmentation outputs = predictor(im) v = Visualizer(im[:, :, ::-1], MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=1) out = v.draw_instance_predictions(outputs["instances"]) # check if a car was detected in the image car_class_true = outputs["instances"].pred_classes == 2 boxes = list(outputs["instances"].pred_boxes[car_class_true]) # if a car was detected, extract the car and perform modernity score classification if len(boxes) != 0: im2 = cropImage(outputs, im, boxes, car_class_true) with torch.no_grad(): scores = torch.nn.functional.softmax(DesignModernityModel(carTransforms(im2).unsqueeze(0))[0]) label = {LABELS[i]: float(scores[i]) for i in range(n_labels)} # if no car was detected, show original image and print "No car detected" else: im2 = Image.fromarray(np.uint8(im)).convert('RGB') label = "No car detected" return im2, label # -- create interface for model ---------------------------------------------------------------------------------------- interface = gr.Interface(classifyCar, inputs='image', outputs=['image','label'], cache_examples=False, title='Modernity car classification') interface.launch()