Spaces:
Runtime error
Runtime error
Formatted the app
Browse files
app.py
CHANGED
@@ -49,27 +49,22 @@ st.image(dificult_reading, caption='Reading sessions descriptions.')
|
|
49 |
st.markdown("---")
|
50 |
# section 2: how can transformers help?
|
51 |
st.markdown("### How can Transformers Help?🪄 ")
|
52 |
-
st.markdown("* Semantic search
|
53 |
-
|
54 |
st.markdown("**Sentence Similarity**")
|
55 |
|
56 |
-
|
|
|
57 |
|
58 |
-
#st.markdown("**Fact Verification / Fact-Checking**")
|
59 |
-
#st.markdown("* This is simply an extenstion of the textual entailment task")
|
60 |
-
#st.markdown("* Given two sentences, sent1 and sent2, determine the relationship: entail, contradict, neutral")
|
61 |
-
#st.markdown("* With fact verification, we can think of the sentences as claim and evidence and labels as support, refute, or not enough information to refute or support.")
|
62 |
st.markdown("---")
|
63 |
# section 4: The process
|
64 |
-
# this is the pipeline in my notes (u are here highlight)
|
65 |
st.markdown("### The Process 🔍")
|
66 |
|
67 |
-
|
68 |
|
69 |
-
#st.markdown("1. User inputs a climate claim")
|
70 |
|
71 |
-
st.markdown("
|
72 |
-
-
|
73 |
|
74 |
#st.markdown("3. Send (claim, evidence) pairs to a transformer model. Have the model predict whether each evidence supports, refutes, or is not relevant to the claim. (📍 YOU ARE HERE!)")
|
75 |
|
@@ -174,9 +169,8 @@ st.markdown("---")
|
|
174 |
st.markdown("## Resource Links")
|
175 |
|
176 |
st.markdown("### References")
|
177 |
-
#st.markdown("0. My [huggingface model card](https://huggingface.co/amandakonet/climatebert-fact-checking), [adopted Climate FEVER dataset card](https://huggingface.co/datasets/amandakonet/climate_fever_adopted), and [project code on github](https://github.com/amandakonet/climate-change-misinformation)")
|
178 |
st.markdown("1. https://www.sbert.net/examples/applications/semantic-search/README.html")
|
179 |
st.markdown("2. https://www.sbert.net/docs/pretrained-models/msmarco-v3.html")
|
180 |
st.markdown("3. Semantic search [colab](https://colab.research.google.com/drive/12cn5Oo0v3HfQQ8Tv6-ukgxXSmT3zl35A?usp=sharing)")
|
181 |
st.markdown("4. [project code on github](https://github.com/vanderbilt-data-science/abstract-search)")
|
182 |
-
|
|
|
49 |
st.markdown("---")
|
50 |
# section 2: how can transformers help?
|
51 |
st.markdown("### How can Transformers Help?🪄 ")
|
52 |
+
st.markdown("* Semantic search applies the user intent, context, and conceptual meanings to match a user query to the corresponding content. It uses vector search to returns results that aim to match a users query. The components work together to retrieve and rank the results based on the meaning.")
|
53 |
+
|
54 |
st.markdown("**Sentence Similarity**")
|
55 |
|
56 |
+
st.markdown("* In this a similar project we used a dataset from the Nashville Analytics Summit")
|
57 |
+
st.markdown("* Given a search phrase, the model search for an abstract that marches the search phrase using cosine similarity. ")
|
58 |
|
|
|
|
|
|
|
|
|
59 |
st.markdown("---")
|
60 |
# section 4: The process
|
|
|
61 |
st.markdown("### The Process 🔍")
|
62 |
|
63 |
+
st.markdown("A participant inputs a search phrase of the sessions he/she would like to attend and the semantic serach would return the title of the session, the abstract of the session, the room number and the time the session will be offered.")
|
64 |
|
|
|
65 |
|
66 |
+
st.markdown("The output of the search query \
|
67 |
+
- Once the user input their phrase or keywords to search sessions of interest, the appropriate sessions are selected by finding the top 3 sessions with the highest similarity scores to the phrase or keyword.")
|
68 |
|
69 |
#st.markdown("3. Send (claim, evidence) pairs to a transformer model. Have the model predict whether each evidence supports, refutes, or is not relevant to the claim. (📍 YOU ARE HERE!)")
|
70 |
|
|
|
169 |
st.markdown("## Resource Links")
|
170 |
|
171 |
st.markdown("### References")
|
|
|
172 |
st.markdown("1. https://www.sbert.net/examples/applications/semantic-search/README.html")
|
173 |
st.markdown("2. https://www.sbert.net/docs/pretrained-models/msmarco-v3.html")
|
174 |
st.markdown("3. Semantic search [colab](https://colab.research.google.com/drive/12cn5Oo0v3HfQQ8Tv6-ukgxXSmT3zl35A?usp=sharing)")
|
175 |
st.markdown("4. [project code on github](https://github.com/vanderbilt-data-science/abstract-search)")
|
176 |
+
|