PBCO commited on
Commit
62b87fe
·
verified ·
1 Parent(s): 2779348

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +54 -93
app.py CHANGED
@@ -1,29 +1,53 @@
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
-
5
- # import spaces #[uncomment to use ZeroGPU]
6
- from diffusers import DiffusionPipeline
7
  import torch
 
8
 
9
- device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
 
 
11
 
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
 
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
 
 
 
 
 
 
18
  pipe = pipe.to(device)
19
 
20
- MAX_SEED = np.iinfo(np.int32).max
21
- MAX_IMAGE_SIZE = 1024
 
 
 
 
 
 
 
 
22
 
 
 
 
 
 
 
 
 
 
 
 
 
23
 
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
  def infer(
26
- prompt,
27
  negative_prompt,
28
  seed,
29
  randomize_seed,
@@ -36,27 +60,10 @@ def infer(
36
  if randomize_seed:
37
  seed = random.randint(0, MAX_SEED)
38
 
39
- generator = torch.Generator().manual_seed(seed)
40
-
41
- image = pipe(
42
- prompt=prompt,
43
- negative_prompt=negative_prompt,
44
- guidance_scale=guidance_scale,
45
- num_inference_steps=num_inference_steps,
46
- width=width,
47
- height=height,
48
- generator=generator,
49
- ).images[0]
50
-
51
  return image, seed
52
 
53
-
54
- examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
58
- ]
59
-
60
  css = """
61
  #col-container {
62
  margin: 0 auto;
@@ -66,20 +73,19 @@ css = """
66
 
67
  with gr.Blocks(css=css) as demo:
68
  with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
70
 
71
  with gr.Row():
72
- prompt = gr.Text(
73
- label="Prompt",
74
  show_label=False,
75
  max_lines=1,
76
- placeholder="Enter your prompt",
77
  container=False,
78
  )
 
79
 
80
- run_button = gr.Button("Run", scale=0, variant="primary")
81
-
82
- result = gr.Image(label="Result", show_label=False)
83
 
84
  with gr.Accordion("Advanced Settings", open=False):
85
  negative_prompt = gr.Text(
@@ -88,65 +94,20 @@ with gr.Blocks(css=css) as demo:
88
  placeholder="Enter a negative prompt",
89
  visible=False,
90
  )
91
-
92
- seed = gr.Slider(
93
- label="Seed",
94
- minimum=0,
95
- maximum=MAX_SEED,
96
- step=1,
97
- value=0,
98
- )
99
-
100
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
 
102
  with gr.Row():
103
- width = gr.Slider(
104
- label="Width",
105
- minimum=256,
106
- maximum=MAX_IMAGE_SIZE,
107
- step=32,
108
- value=1024, # Replace with defaults that work for your model
109
- )
110
-
111
- height = gr.Slider(
112
- label="Height",
113
- minimum=256,
114
- maximum=MAX_IMAGE_SIZE,
115
- step=32,
116
- value=1024, # Replace with defaults that work for your model
117
- )
118
 
119
  with gr.Row():
120
- guidance_scale = gr.Slider(
121
- label="Guidance scale",
122
- minimum=0.0,
123
- maximum=10.0,
124
- step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
- )
127
-
128
- num_inference_steps = gr.Slider(
129
- label="Number of inference steps",
130
- minimum=1,
131
- maximum=50,
132
- step=1,
133
- value=2, # Replace with defaults that work for your model
134
- )
135
-
136
- gr.Examples(examples=examples, inputs=[prompt])
137
- gr.on(
138
- triggers=[run_button.click, prompt.submit],
139
  fn=infer,
140
- inputs=[
141
- prompt,
142
- negative_prompt,
143
- seed,
144
- randomize_seed,
145
- width,
146
- height,
147
- guidance_scale,
148
- num_inference_steps,
149
- ],
150
  outputs=[result, seed],
151
  )
152
 
 
1
  import gradio as gr
2
  import numpy as np
3
  import random
 
 
 
4
  import torch
5
+ from diffusers import DiffusionPipeline
6
 
7
+ # === Configuration ===
8
+ MODEL_REPO_ID = "stabilityai/sdxl-turbo"
9
+ MAX_SEED = np.iinfo(np.int32).max
10
+ MAX_IMAGE_SIZE = 1024
11
 
12
+ def get_torch_dtype():
13
+ return torch.float16 if torch.cuda.is_available() else torch.float32
 
 
14
 
15
+ def get_device():
16
+ return "cuda" if torch.cuda.is_available() else "cpu"
17
+
18
+ # === Load the diffusion model ===
19
+ torch_dtype = get_torch_dtype()
20
+ device = get_device()
21
+ pipe = DiffusionPipeline.from_pretrained(MODEL_REPO_ID, torch_dtype=torch_dtype)
22
  pipe = pipe.to(device)
23
 
24
+ # === Define custom prompt builder ===
25
+ def build_prompt(word):
26
+ return (
27
+ f"Create a powerful, emotionally resonant image that vividly illustrates the meaning of the word '{word}', "
28
+ f"so that even someone who doesn’t speak English can understand it instantly. "
29
+ f"The visual should be sharp, symbolic, and universally relatable. "
30
+ f"Seamlessly weave the word '{word}' into the scene—clearly spelled but not overpowering—"
31
+ f"so it supports the concept without drawing attention away. "
32
+ f"Format: 1080x1080 pixels (square) for Instagram in a (.png) format."
33
+ )
34
 
35
+ # === Image generation function ===
36
+ def generate_image(prompt, negative_prompt, guidance_scale, num_inference_steps, width, height, seed):
37
+ generator = torch.Generator().manual_seed(seed)
38
+ return pipe(
39
+ prompt=prompt,
40
+ negative_prompt=negative_prompt,
41
+ guidance_scale=guidance_scale,
42
+ num_inference_steps=num_inference_steps,
43
+ width=width,
44
+ height=height,
45
+ generator=generator,
46
+ ).images[0]
47
 
48
+ # === Inference wrapper ===
49
  def infer(
50
+ word,
51
  negative_prompt,
52
  seed,
53
  randomize_seed,
 
60
  if randomize_seed:
61
  seed = random.randint(0, MAX_SEED)
62
 
63
+ prompt = build_prompt(word)
64
+ image = generate_image(prompt, negative_prompt, guidance_scale, num_inference_steps, width, height, seed)
 
 
 
 
 
 
 
 
 
 
65
  return image, seed
66
 
 
 
 
 
 
 
 
67
  css = """
68
  #col-container {
69
  margin: 0 auto;
 
73
 
74
  with gr.Blocks(css=css) as demo:
75
  with gr.Column(elem_id="col-container"):
76
+ gr.Markdown(" # Word-to-Image Generator for Instagram 🎨")
77
 
78
  with gr.Row():
79
+ word = gr.Text(
80
+ label="Vocabulary Word",
81
  show_label=False,
82
  max_lines=1,
83
+ placeholder="Enter a vocabulary word",
84
  container=False,
85
  )
86
+ run_button = gr.Button("Generate Image", scale=0, variant="primary")
87
 
88
+ result = gr.Image(label="Generated Image", show_label=False)
 
 
89
 
90
  with gr.Accordion("Advanced Settings", open=False):
91
  negative_prompt = gr.Text(
 
94
  placeholder="Enter a negative prompt",
95
  visible=False,
96
  )
97
+ seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
 
 
 
 
 
 
 
 
98
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
99
 
100
  with gr.Row():
101
+ width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1080)
102
+ height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1080)
 
 
 
 
 
 
 
 
 
 
 
 
 
103
 
104
  with gr.Row():
105
+ guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=3.5)
106
+ num_inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=50, step=1, value=20)
107
+
108
+ run_button.click(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
109
  fn=infer,
110
+ inputs=[word, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
 
 
 
 
 
 
 
 
 
111
  outputs=[result, seed],
112
  )
113