WOD / app.py
PBCO's picture
Update app.py
24dc687 verified
raw
history blame
4.06 kB
import gradio as gr
import numpy as np
import random
import torch
from diffusers import DiffusionPipeline
# === Configuration ===
MODEL_REPO_ID = "stabilityai/sdxl-turbo"
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def get_torch_dtype():
return torch.float16 if torch.cuda.is_available() else torch.float32
def get_device():
return "cuda" if torch.cuda.is_available() else "cpu"
# === Lazy load the diffusion model ===
def get_pipe():
if not hasattr(get_pipe, "pipe"):
pipe = DiffusionPipeline.from_pretrained(MODEL_REPO_ID, torch_dtype=get_torch_dtype()).to(get_device())
get_pipe.pipe = pipe
return get_pipe.pipe
# === Define custom prompt builder ===
def build_prompt(word):
return (
f"Create a powerful, emotionally resonant image that vividly illustrates the meaning of the word '{word}', "
f"so that even someone who doesn’t speak English can understand it instantly. "
f"The visual should be sharp, symbolic, and universally relatable. "
f"Seamlessly weave the word '{word}' into the scene—clearly spelled but not overpowering—"
f"so it supports the concept without drawing attention away. "
f"Format: 1080x1080 pixels (square) for Instagram in a (.png) format."
)
# === Image generation function ===
def generate_image(prompt, negative_prompt, guidance_scale, num_inference_steps, width, height, seed):
generator = torch.Generator().manual_seed(seed)
with torch.inference_mode():
return get_pipe()(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
# === Inference wrapper ===
def infer(
word,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
prompt = build_prompt(word)
image = generate_image(prompt, negative_prompt, guidance_scale, num_inference_steps, width, height, seed)
return image, seed
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # Word-to-Image Generator for Instagram 🎨")
with gr.Row():
word = gr.Text(
label="Vocabulary Word",
show_label=False,
max_lines=1,
placeholder="Enter a vocabulary word",
container=False,
)
run_button = gr.Button("Generate Image", scale=0, variant="primary")
result = gr.Image(label="Generated Image", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1080)
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1080)
with gr.Row():
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=3.5)
num_inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=50, step=1, value=4)
run_button.click(
fn=infer,
inputs=[word, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()