Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| import os.path as osp | |
| import platform | |
| import shutil | |
| import time | |
| import warnings | |
| import torch | |
| from torch.optim import Optimizer | |
| import annotator.uniformer.mmcv as mmcv | |
| from .base_runner import BaseRunner | |
| from .builder import RUNNERS | |
| from .checkpoint import save_checkpoint | |
| from .hooks import IterTimerHook | |
| from .utils import get_host_info | |
| class IterLoader: | |
| def __init__(self, dataloader): | |
| self._dataloader = dataloader | |
| self.iter_loader = iter(self._dataloader) | |
| self._epoch = 0 | |
| def epoch(self): | |
| return self._epoch | |
| def __next__(self): | |
| try: | |
| data = next(self.iter_loader) | |
| except StopIteration: | |
| self._epoch += 1 | |
| if hasattr(self._dataloader.sampler, 'set_epoch'): | |
| self._dataloader.sampler.set_epoch(self._epoch) | |
| time.sleep(2) # Prevent possible deadlock during epoch transition | |
| self.iter_loader = iter(self._dataloader) | |
| data = next(self.iter_loader) | |
| return data | |
| def __len__(self): | |
| return len(self._dataloader) | |
| class IterBasedRunner(BaseRunner): | |
| """Iteration-based Runner. | |
| This runner train models iteration by iteration. | |
| """ | |
| def train(self, data_loader, **kwargs): | |
| self.model.train() | |
| self.mode = 'train' | |
| self.data_loader = data_loader | |
| self._epoch = data_loader.epoch | |
| data_batch = next(data_loader) | |
| self.call_hook('before_train_iter') | |
| outputs = self.model.train_step(data_batch, self.optimizer, **kwargs) | |
| if not isinstance(outputs, dict): | |
| raise TypeError('model.train_step() must return a dict') | |
| if 'log_vars' in outputs: | |
| self.log_buffer.update(outputs['log_vars'], outputs['num_samples']) | |
| self.outputs = outputs | |
| self.call_hook('after_train_iter') | |
| self._inner_iter += 1 | |
| self._iter += 1 | |
| def val(self, data_loader, **kwargs): | |
| self.model.eval() | |
| self.mode = 'val' | |
| self.data_loader = data_loader | |
| data_batch = next(data_loader) | |
| self.call_hook('before_val_iter') | |
| outputs = self.model.val_step(data_batch, **kwargs) | |
| if not isinstance(outputs, dict): | |
| raise TypeError('model.val_step() must return a dict') | |
| if 'log_vars' in outputs: | |
| self.log_buffer.update(outputs['log_vars'], outputs['num_samples']) | |
| self.outputs = outputs | |
| self.call_hook('after_val_iter') | |
| self._inner_iter += 1 | |
| def run(self, data_loaders, workflow, max_iters=None, **kwargs): | |
| """Start running. | |
| Args: | |
| data_loaders (list[:obj:`DataLoader`]): Dataloaders for training | |
| and validation. | |
| workflow (list[tuple]): A list of (phase, iters) to specify the | |
| running order and iterations. E.g, [('train', 10000), | |
| ('val', 1000)] means running 10000 iterations for training and | |
| 1000 iterations for validation, iteratively. | |
| """ | |
| assert isinstance(data_loaders, list) | |
| assert mmcv.is_list_of(workflow, tuple) | |
| assert len(data_loaders) == len(workflow) | |
| if max_iters is not None: | |
| warnings.warn( | |
| 'setting max_iters in run is deprecated, ' | |
| 'please set max_iters in runner_config', DeprecationWarning) | |
| self._max_iters = max_iters | |
| assert self._max_iters is not None, ( | |
| 'max_iters must be specified during instantiation') | |
| work_dir = self.work_dir if self.work_dir is not None else 'NONE' | |
| self.logger.info('Start running, host: %s, work_dir: %s', | |
| get_host_info(), work_dir) | |
| self.logger.info('Hooks will be executed in the following order:\n%s', | |
| self.get_hook_info()) | |
| self.logger.info('workflow: %s, max: %d iters', workflow, | |
| self._max_iters) | |
| self.call_hook('before_run') | |
| iter_loaders = [IterLoader(x) for x in data_loaders] | |
| self.call_hook('before_epoch') | |
| while self.iter < self._max_iters: | |
| for i, flow in enumerate(workflow): | |
| self._inner_iter = 0 | |
| mode, iters = flow | |
| if not isinstance(mode, str) or not hasattr(self, mode): | |
| raise ValueError( | |
| 'runner has no method named "{}" to run a workflow'. | |
| format(mode)) | |
| iter_runner = getattr(self, mode) | |
| for _ in range(iters): | |
| if mode == 'train' and self.iter >= self._max_iters: | |
| break | |
| iter_runner(iter_loaders[i], **kwargs) | |
| time.sleep(1) # wait for some hooks like loggers to finish | |
| self.call_hook('after_epoch') | |
| self.call_hook('after_run') | |
| def resume(self, | |
| checkpoint, | |
| resume_optimizer=True, | |
| map_location='default'): | |
| """Resume model from checkpoint. | |
| Args: | |
| checkpoint (str): Checkpoint to resume from. | |
| resume_optimizer (bool, optional): Whether resume the optimizer(s) | |
| if the checkpoint file includes optimizer(s). Default to True. | |
| map_location (str, optional): Same as :func:`torch.load`. | |
| Default to 'default'. | |
| """ | |
| if map_location == 'default': | |
| device_id = torch.cuda.current_device() | |
| checkpoint = self.load_checkpoint( | |
| checkpoint, | |
| map_location=lambda storage, loc: storage.cuda(device_id)) | |
| else: | |
| checkpoint = self.load_checkpoint( | |
| checkpoint, map_location=map_location) | |
| self._epoch = checkpoint['meta']['epoch'] | |
| self._iter = checkpoint['meta']['iter'] | |
| self._inner_iter = checkpoint['meta']['iter'] | |
| if 'optimizer' in checkpoint and resume_optimizer: | |
| if isinstance(self.optimizer, Optimizer): | |
| self.optimizer.load_state_dict(checkpoint['optimizer']) | |
| elif isinstance(self.optimizer, dict): | |
| for k in self.optimizer.keys(): | |
| self.optimizer[k].load_state_dict( | |
| checkpoint['optimizer'][k]) | |
| else: | |
| raise TypeError( | |
| 'Optimizer should be dict or torch.optim.Optimizer ' | |
| f'but got {type(self.optimizer)}') | |
| self.logger.info(f'resumed from epoch: {self.epoch}, iter {self.iter}') | |
| def save_checkpoint(self, | |
| out_dir, | |
| filename_tmpl='iter_{}.pth', | |
| meta=None, | |
| save_optimizer=True, | |
| create_symlink=True): | |
| """Save checkpoint to file. | |
| Args: | |
| out_dir (str): Directory to save checkpoint files. | |
| filename_tmpl (str, optional): Checkpoint file template. | |
| Defaults to 'iter_{}.pth'. | |
| meta (dict, optional): Metadata to be saved in checkpoint. | |
| Defaults to None. | |
| save_optimizer (bool, optional): Whether save optimizer. | |
| Defaults to True. | |
| create_symlink (bool, optional): Whether create symlink to the | |
| latest checkpoint file. Defaults to True. | |
| """ | |
| if meta is None: | |
| meta = {} | |
| elif not isinstance(meta, dict): | |
| raise TypeError( | |
| f'meta should be a dict or None, but got {type(meta)}') | |
| if self.meta is not None: | |
| meta.update(self.meta) | |
| # Note: meta.update(self.meta) should be done before | |
| # meta.update(epoch=self.epoch + 1, iter=self.iter) otherwise | |
| # there will be problems with resumed checkpoints. | |
| # More details in https://github.com/open-mmlab/mmcv/pull/1108 | |
| meta.update(epoch=self.epoch + 1, iter=self.iter) | |
| filename = filename_tmpl.format(self.iter + 1) | |
| filepath = osp.join(out_dir, filename) | |
| optimizer = self.optimizer if save_optimizer else None | |
| save_checkpoint(self.model, filepath, optimizer=optimizer, meta=meta) | |
| # in some environments, `os.symlink` is not supported, you may need to | |
| # set `create_symlink` to False | |
| if create_symlink: | |
| dst_file = osp.join(out_dir, 'latest.pth') | |
| if platform.system() != 'Windows': | |
| mmcv.symlink(filename, dst_file) | |
| else: | |
| shutil.copy(filepath, dst_file) | |
| def register_training_hooks(self, | |
| lr_config, | |
| optimizer_config=None, | |
| checkpoint_config=None, | |
| log_config=None, | |
| momentum_config=None, | |
| custom_hooks_config=None): | |
| """Register default hooks for iter-based training. | |
| Checkpoint hook, optimizer stepper hook and logger hooks will be set to | |
| `by_epoch=False` by default. | |
| Default hooks include: | |
| +----------------------+-------------------------+ | |
| | Hooks | Priority | | |
| +======================+=========================+ | |
| | LrUpdaterHook | VERY_HIGH (10) | | |
| +----------------------+-------------------------+ | |
| | MomentumUpdaterHook | HIGH (30) | | |
| +----------------------+-------------------------+ | |
| | OptimizerStepperHook | ABOVE_NORMAL (40) | | |
| +----------------------+-------------------------+ | |
| | CheckpointSaverHook | NORMAL (50) | | |
| +----------------------+-------------------------+ | |
| | IterTimerHook | LOW (70) | | |
| +----------------------+-------------------------+ | |
| | LoggerHook(s) | VERY_LOW (90) | | |
| +----------------------+-------------------------+ | |
| | CustomHook(s) | defaults to NORMAL (50) | | |
| +----------------------+-------------------------+ | |
| If custom hooks have same priority with default hooks, custom hooks | |
| will be triggered after default hooks. | |
| """ | |
| if checkpoint_config is not None: | |
| checkpoint_config.setdefault('by_epoch', False) | |
| if lr_config is not None: | |
| lr_config.setdefault('by_epoch', False) | |
| if log_config is not None: | |
| for info in log_config['hooks']: | |
| info.setdefault('by_epoch', False) | |
| super(IterBasedRunner, self).register_training_hooks( | |
| lr_config=lr_config, | |
| momentum_config=momentum_config, | |
| optimizer_config=optimizer_config, | |
| checkpoint_config=checkpoint_config, | |
| log_config=log_config, | |
| timer_config=IterTimerHook(), | |
| custom_hooks_config=custom_hooks_config) | |