Spaces:
Runtime error
Runtime error
Commit
·
e989416
1
Parent(s):
bfb0cf9
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import numpy as np
|
| 4 |
+
import cv2
|
| 5 |
+
from huggingface_hub import from_pretrained_keras
|
| 6 |
+
|
| 7 |
+
st.header("Segmentación de dientes con rayos X")
|
| 8 |
+
|
| 9 |
+
st.markdown('''
|
| 10 |
+
|
| 11 |
+
Hola estudiantes de Platzi 🚀. Este modelo usan UNet para segmentar imágenes
|
| 12 |
+
de dientos en rayos X. Se utila un modelo de Keras importado con la función
|
| 13 |
+
`huggingface_hub.from_pretrained_keras`. Recuerda que el Hub de Hugging Face está integrado
|
| 14 |
+
con muchas librerías como Keras, scikit-learn, fastai y otras.
|
| 15 |
+
|
| 16 |
+
El modelo fue creado por [SerdarHelli](https://huggingface.co/SerdarHelli/Segmentation-of-Teeth-in-Panoramic-X-ray-Image-Using-U-Net).
|
| 17 |
+
|
| 18 |
+
''')
|
| 19 |
+
|
| 20 |
+
model_id = "SerdarHelli/Segmentation-of-Teeth-in-Panoramic-X-ray-Image-Using-U-Net"
|
| 21 |
+
model=from_pretrained_keras(model_id)
|
| 22 |
+
|
| 23 |
+
## Si una imagen tiene más de un canal entonces se convierte a escala de grises (1 canal)
|
| 24 |
+
def convertir_one_channel(img):
|
| 25 |
+
if len(img.shape)>2:
|
| 26 |
+
img= cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
| 27 |
+
return img
|
| 28 |
+
else:
|
| 29 |
+
return img
|
| 30 |
+
|
| 31 |
+
def convertir_rgb(img):
|
| 32 |
+
if len(img.shape)==2:
|
| 33 |
+
img= cv2.cvtColor(img,cv2.COLOR_GRAY2RGB)
|
| 34 |
+
return img
|
| 35 |
+
else:
|
| 36 |
+
return img
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
image_file = st.file_uploader("Sube aquí tu imagen.", type=["png","jpg","jpeg"])
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
if image_file is not None:
|
| 43 |
+
|
| 44 |
+
img= Image.open(image_file)
|
| 45 |
+
|
| 46 |
+
st.image(img,width=850)
|
| 47 |
+
|
| 48 |
+
img=np.asarray(img)
|
| 49 |
+
|
| 50 |
+
img_cv=convertir_one_channel(img)
|
| 51 |
+
img_cv=cv2.resize(img_cv,(512,512), interpolation=cv2.INTER_LANCZOS4)
|
| 52 |
+
img_cv=np.float32(img_cv/255)
|
| 53 |
+
|
| 54 |
+
img_cv=np.reshape(img_cv,(1,512,512,1))
|
| 55 |
+
prediction=model.predict(img_cv)
|
| 56 |
+
predicted=prediction[0]
|
| 57 |
+
predicted = cv2.resize(predicted, (img.shape[1],img.shape[0]), interpolation=cv2.INTER_LANCZOS4)
|
| 58 |
+
mask=np.uint8(predicted*255)#
|
| 59 |
+
_, mask = cv2.threshold(mask, thresh=0, maxval=255, type=cv2.THRESH_BINARY+cv2.THRESH_OTSU)
|
| 60 |
+
kernel =( np.ones((5,5), dtype=np.float32))
|
| 61 |
+
mask=cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel,iterations=1 )
|
| 62 |
+
mask=cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel,iterations=1 )
|
| 63 |
+
cnts,hieararch=cv2.findContours(mask,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
| 64 |
+
output = cv2.drawContours(convertir_one_channel(img), cnts, -1, (255, 0, 0) , 3)
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
if output is not None :
|
| 68 |
+
st.subheader("Segmentación:")
|
| 69 |
+
st.write(output.shape)
|
| 70 |
+
st.image(output,width=850)
|