File size: 19,897 Bytes
3455d37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
#!/usr/bin/env python
# coding=utf-8
"""This is a class called HFDecoderModel which is a wrapper around transformers model and
tokenizer classes. It has several methods such as __init__, tokenize, and train that are 
used for training and fine-tuning the model. The __init__ method takes in several arguments
such as model_args, tune_strategy, and ds_config, which are used to load the pretrained 
model and tokenizer, and initialize the training settings.

The tokenize method is used to tokenize the input text and return the input IDs and attention
masks that can be fed to the model for training or inference.

This class supports different tune_strategy options such as 'normal', 'none', 'lora', and
'adapter', which allow for different fine-tuning settings of the model. However, the 'lora'
and 'adapter' strategies are not yet implemented.

Overall, this class provides a convenient interface for loading and fine-tuning transformer
models and can be used for various NLP tasks such as language modeling, text classification,
and question answering.
"""

import logging
from typing import List, Union

import deepspeed

from peft import (
    LoraConfig,
    PeftModel,
    TaskType,
    get_peft_config,
    get_peft_model,
)

import torch
import transformers
from transformers.deepspeed import HfDeepSpeedConfig

from transformers.testing_utils import CaptureLogger

from transformers import (
    CONFIG_MAPPING,
    AutoConfig,
    AutoTokenizer,
    AutoModelForCausalLM,
)

from lmflow.datasets.dataset import Dataset
from lmflow.models.decoder_model import DecoderModel
from lmflow.models.interfaces.tunable import Tunable
from lmflow.utils.constants import (
    TEXT_ONLY_DATASET_DESCRIPTION,
    TEXT2TEXT_DATASET_DESCRIPTION,
)


logger = logging.getLogger(__name__)


class HFDecoderModel(DecoderModel, Tunable):
    r"""
    Initializes a HFDecoderModel instance.

    Parameters
    ------------

    model_args : 
        Model arguments such as model name, path, revision, etc.

    tune_strategy : str or none,  default="normal".
        A string representing the dataset backend. Defaults to "huggingface".
    
    ds_config :   
        Deepspeed configuations.
    
    args : Optional.
        Positional arguments.
    
    kwargs : Optional.
        Keyword arguments.    
    """

    def __init__(
        self,
        model_args,
        tune_strategy='normal',
        ds_config=None,
        device="gpu",
        *args,
        **kwargs
    ):
        """
        Initializes a HFDecoderModel instance.
        :param model_args: dictionary with model arguments such as model name, path, revision, etc.
        :param tune_strategy: tuning strategy: normal, none, lora or adapter
        :param ds_config: deepspeed configuration for distributed training
        """

        # See more about loading any type of standard or custom dataset (from
        # files, python dict, pandas DataFrame, etc) at
        # https://huggingface.co/docs/datasets/loading_datasets.html.

        # Load pretrained model and tokenizer
        #
        # Distributed training: The .from_pretrained methods guarantee that
        # only one local process can concurrently download model & vocab.

        self.device = device
        self.model_args = model_args
        torch_dtype = (
            model_args.torch_dtype
            if model_args.torch_dtype in ["auto", None]
            else getattr(torch, model_args.torch_dtype)
        )
        if tune_strategy == 'normal':
            config_kwargs = {
                "cache_dir": model_args.cache_dir,
                "revision": model_args.model_revision,
                "use_auth_token": True if model_args.use_auth_token else None,
            }
            if model_args.config_name:
                config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
            elif model_args.model_name_or_path:
                config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
            else:
                config = CONFIG_MAPPING[model_args.model_type]()
                logger.warning("You are instantiating a new config instance from scratch.")
                if model_args.config_overrides is not None:
                    logger.info(f"Overriding config: {model_args.config_overrides}")
                    config.update_from_string(model_args.config_overrides)
                    logger.info(f"New config: {config}")

            tokenizer_kwargs = {
                "cache_dir": model_args.cache_dir,
                "use_fast": model_args.use_fast_tokenizer,
                "revision": model_args.model_revision,
                "use_auth_token": True if model_args.use_auth_token else None,
            }
            if model_args.tokenizer_name:
                tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
            elif model_args.model_name_or_path:
                tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs)
            else:
                raise ValueError(
                    "You are instantiating a new tokenizer from scratch. This is"
                    " not supported by this script. You can do it from another"
                    " script, save it, and load it from here, using"
                    " --tokenizer_name."
                )

            if model_args.model_name_or_path:
                model = AutoModelForCausalLM.from_pretrained(
                    model_args.model_name_or_path,
                    from_tf=bool(".ckpt" in model_args.model_name_or_path),
                    config=config,
                    cache_dir=model_args.cache_dir,
                    revision=model_args.model_revision,
                    use_auth_token=True if model_args.use_auth_token else None,
                    torch_dtype=torch_dtype,
                )
            else:
                model = AutoModelForCausalLM.from_config(config)
                n_params = sum(dict((p.data_ptr(), p.numel()) for p in model.parameters()).values())
                logger.info(f"Training new model from scratch - Total size={n_params/2**20:.2f}M params")
            self.backend_model_full = model
            if model_args.use_lora:
                if model_args.lora_target_modules:
                    lora_target_modules = model_args.lora_target_modules
                else:
                    lora_target_modules = None
                peft_config = LoraConfig(
                    task_type=TaskType.CAUSAL_LM,
                    inference_mode=False,
                    r=model_args.lora_r,
                    lora_alpha=model_args.lora_alpha,
                    lora_dropout=model_args.lora_dropout,
                    target_modules=lora_target_modules,
                )
                model = get_peft_model(model, peft_config)
                model.print_trainable_parameters()

            # We resize the embeddings only when necessary to avoid index errors.
            # If you are creating a model from scratch on a small vocab and want a
            # smaller embedding size, remove this test.
            embedding_size = model.get_input_embeddings().weight.shape[0]
            if len(tokenizer) > embedding_size:
                model.resize_token_embeddings(len(tokenizer))

            self.config = config
            self.backend_model = model
            self.tokenizer = tokenizer
            self.tune_strategy = tune_strategy

        elif tune_strategy == 'none':
            
            peft_model_id = model_args.lora_model_path
            # NOTE: Currently offload is not supported by llama
            if "llama" in model_args.model_name_or_path and model_args.use_ram_optimized_load:
                logger.warning(
                    "llama does not support RAM optimized load. Automatically"
                    " use original load instead."
                )
                model_args.use_ram_optimized_load = False

            if model_args.use_ram_optimized_load and peft_model_id is None:
                try:
                    # RAM-optimized load
                    self.backend_model = AutoModelForCausalLM.from_pretrained(
                        model_args.model_name_or_path,
                        device_map="auto",
                        offload_folder="offload",
                        offload_state_dict=True,
                        torch_dtype=torch_dtype,
                    )
                except:
                    logger.warning(
                        "Failed to use RAM optimized load. Automatically"
                        " use original load instead."
                    )
                    # Normal load
                    self.backend_model = AutoModelForCausalLM.from_pretrained(
                        model_args.model_name_or_path,
                        torch_dtype=torch_dtype,
                    )
            else:
                if peft_model_id is not None:
                    logger.warning(
                        "LoRA does not support RAM optimized load currently."
                        " Automatically use original load instead."
                    )
                self.backend_model = AutoModelForCausalLM.from_pretrained(
                    model_args.model_name_or_path,
                    torch_dtype=torch_dtype,
                )

            self.tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path)
            self.backend_model_full = self.backend_model
            if peft_model_id is not None:
                self.backend_model = PeftModel.from_pretrained(
                    self.backend_model, peft_model_id
                )

            if device == "gpu":
                deepspeed.init_distributed()
                self.ds_engine = deepspeed.initialize(model=self.backend_model, config_params=ds_config)[0]
                self.ds_engine.module.eval()

        elif tune_strategy == 'adapter':
            raise NotImplementedError('adapter tune strategy not implemented')


    def tokenize(self, dataset, add_special_tokens=True, *args, **kwargs):
        """
        Tokenize the full dataset.
    
        Parameters
        ------------
        dataset : lmflow.datasets.Dataset.

        args : Optional.
            Positional arguments.
        
        kwargs : Optional.
            Keyword arguments.    
        
        Returns
        ------------
        tokenized_datasets :
            The tokenized dataset, without any leading or trailing special
            tokens (normally they are Begin-Of-Sentence or End-Of-Sentence
            tokens).
        """
        # Preprocessing the datasets.
        # First we tokenize all the texts.
        if dataset.get_backend() != "huggingface":
            raise NotImplementedError(
                "tokenization of datasets with non-huggingface backend are"
                "not supported yet"
            )

        dataset_type = dataset.get_type()

        # Requires three types of information for tokenizing different datasets
        #   1) Which fields require tokenization, e.g.
        #        "text2float": "text", but not "float"
        #        "text2text": both "input" and "output"
        #   2) How will there tokenized sequence concatenated together, e.g.
        #        "text_only": "text" -> "text"
        #        "text2text": "input", "output" -> "input" + "output"
        #   3) Which fields require loss in final computation, e.g.
        #        "text_only": "text"
        #        "text2text": "output" only
        tokenized_column_order = None       # Handles 1) and 2)
        label_columns = None                # Handles 3)
        if dataset_type == "text_only":
            tokenized_column_order = ["text"]
            label_columns = ["text"]
        elif dataset_type == "text2text":
            tokenized_column_order = ["input", "output"]
            label_columns = ["output"]
        else:
            raise NotImplementedError(
                f"dataset type \"{dataset_type}\" is not supported, currently"
                " only support following data types:\n"
                f"    1) {TEXT_ONLY_DATASET_DESCRIPTION}\n"
                f"    2) {TEXT2TEXT_DATASET_DESCRIPTION}\n"
            )

        model_args = self.model_args
        raw_datasets = dataset
        hf_raw_datasets = dataset.get_backend_dataset()
        column_names = list(hf_raw_datasets.features)

        # since this will be pickled to avoid _LazyModule error in Hasher force
        # logger loading before tokenize_function
        tok_logger = transformers.utils.logging.get_logger("transformers.tokenization_utils_base")

        def tokenize_function(examples):
            num_example = len(examples[column_names[0]])
            token_dict = {
                "input_ids": [[] for _ in range(num_example)],
                "attention_mask": [[] for _ in range(num_example)],
                "labels": [[] for _ in range(num_example)],
            }
            with CaptureLogger(tok_logger) as cl:
                for column_name in tokenized_column_order:
                    encoding = self.tokenizer(
                        examples[column_name],
                        add_special_tokens=add_special_tokens,
                        truncation=True if model_args.use_lora else None,
                    )

                    if column_name in label_columns:
                        labels = encoding["input_ids"].copy()
                    else:
                        labels = [
                            [-100] * len(encoding["input_ids"][i])
                             for i in range(num_example)
                        ]

                    for i in range(num_example):
                        token_dict["input_ids"][i].extend(
                            encoding["input_ids"][i]
                        )
                        token_dict["attention_mask"][i].extend(
                            encoding["attention_mask"][i]
                        )
                        token_dict["labels"][i].extend(labels[i])

            # clm input could be much much longer than block_size
            if "Token indices sequence length is longer than the" in cl.out:
                tok_logger.warning(
                    "^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits"
                    " before being passed to the model."
                )
            return token_dict

        data_args = raw_datasets.get_data_args()
        if not data_args.streaming:
            tokenized_datasets = raw_datasets.map(
                tokenize_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on dataset",
            )
        else:
            tokenized_datasets = raw_datasets.map(
                tokenize_function,
                batched=True,
                remove_columns=column_names,
            )
        return tokenized_datasets


    def encode(self, input: Union[str, List[str]], *args, **kwargs ) -> Union[List[int], List[List[int]]]:
        """
        Perform encoding process of the tokenizer.
    
        Parameters
        ------------
        inputs : str or list.
            The text sequence.
            
        args : Optional.
            Positional arguments.
        
        kwargs : Optional.
            Keyword arguments.    
        
        Returns
        ------------
        outputs :
            The tokenized inputs.
        """
        if isinstance(input, list):
            output = []
            for single_input in input:
                single_output = self.encode(single_input, *args, **kwargs)
                output.append(single_output)
            return output
        elif isinstance(input, str):
            return self.tokenizer.encode(text=input, *args, **kwargs)
        else:
            raise NotImplementedError(f'type "{type(input)}" cannot be encoded')


    def decode(self, input, *args, **kwargs ) -> Union[str, List[str]]:
        """
        Perform decoding process of the tokenizer.
    
        Parameters
        ------------
        inputs : list.
            The token sequence.
            
        args : Optional.
            Positional arguments.
        
        kwargs : Optional.
            Keyword arguments.    
        
        Returns
        ------------
        outputs :
            The text decoded from the token inputs.
        """
        if isinstance(input, list) and input and isinstance(input[0], list):
            output = []
            for single_input in input:
                single_output = self.decode(single_input, *args, **kwargs)
                output.append(single_output)
            return output
        else:
            # Can be list of ints or a Tensor
            return self.tokenizer.decode(input, *args, **kwargs)


    def inference(self, inputs, *args, **kwargs):
        """
        Perform generation process of the model.
    
        Parameters
        ------------
        inputs :
            The sequence used as a prompt for the generation or as model inputs to the model.
            
        args : Optional.
            Positional arguments.
        
        kwargs : Optional.
            Keyword arguments.    
        
        Returns
        ------------
        outputs :
            The generated sequence output 
        """


        with torch.no_grad():
            if self.device == "gpu":
                outputs = self.ds_engine.module.generate(
                    input_ids=inputs,
                    synced_gpus=True,
                    pad_token_id=self.tokenizer.eos_token_id,
                    *args,
                    **kwargs
                )
            elif self.device == "cpu":
                outputs = self.backend_model.generate(
                    input_ids=inputs,
                    synced_gpus=True,
                    pad_token_id=self.tokenizer.eos_token_id,
                    *args,
                    **kwargs
                )
            else:
                raise NotImplementedError(
                    f"device \"{self.device}\" is not supported"
                )
        return outputs


    def merge_lora_weights(self):
        if self.model_args.use_lora:
            self.get_backend_model().merge_and_unload()
        else:
            logger.warning("LoRA training is NOT enabled. Merging LoRA weights is not applicable.")


    def save(self, dir, save_full_model=False, *args, **kwargs):
        """
        Perform generation process of the model.
    
        Parameters
        ------------
        dir :
            The directory to save model and tokenizer
            
        save_full_model : Optional.
            Whether to save full model.
        
        kwargs : Optional.
            Keyword arguments.    
        
        Returns
        ------------
        outputs :
            The generated sequence output 
        """
        self.get_tokenizer().save_pretrained(dir)
        if save_full_model and self.model_args.use_lora:
            self.backend_model_full.save_pretrained(dir)
        else:
            self.get_backend_model().save_pretrained(dir)


    def get_max_length(self):
        """
        Return max acceptable input length in terms of tokens.
        """
        return self.tokenizer.model_max_length


    def get_tokenizer(self):
        """
        Return the tokenizer of the model.
        """
        return self.tokenizer


    def get_backend_model(self):
        """
        Return the backend model.
        """
        return self.backend_model