Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| import torch.nn as nn | |
| import torch.utils.checkpoint | |
| import math | |
| from .utils.modules import PatchEmbed, TimestepEmbedder | |
| from .utils.modules import PE_wrapper, RMSNorm | |
| from .blocks import DiTBlock, JointDiTBlock, FinalBlock | |
| class UDiT(nn.Module): | |
| def __init__(self, | |
| img_size=224, patch_size=16, in_chans=3, | |
| input_type='2d', out_chans=None, | |
| embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., | |
| qkv_bias=False, qk_scale=None, qk_norm=None, | |
| act_layer='gelu', norm_layer='layernorm', | |
| context_norm=False, | |
| use_checkpoint=False, | |
| # time fusion ada or token | |
| time_fusion='token', | |
| ada_lora_rank=None, ada_lora_alpha=None, | |
| cls_dim=None, | |
| # max length is only used for concat | |
| context_dim=768, context_fusion='concat', | |
| context_max_length=128, context_pe_method='sinu', | |
| pe_method='abs', rope_mode='none', | |
| use_conv=True, | |
| skip=True, skip_norm=True): | |
| super().__init__() | |
| self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models | |
| # input | |
| self.in_chans = in_chans | |
| self.input_type = input_type | |
| if self.input_type == '2d': | |
| num_patches = (img_size[0] // patch_size) * (img_size[1] // patch_size) | |
| elif self.input_type == '1d': | |
| num_patches = img_size // patch_size | |
| self.patch_embed = PatchEmbed(patch_size=patch_size, in_chans=in_chans, | |
| embed_dim=embed_dim, input_type=input_type) | |
| out_chans = in_chans if out_chans is None else out_chans | |
| self.out_chans = out_chans | |
| # position embedding | |
| self.rope = rope_mode | |
| self.x_pe = PE_wrapper(dim=embed_dim, method=pe_method, | |
| length=num_patches) | |
| print(f'x position embedding: {pe_method}') | |
| print(f'rope mode: {self.rope}') | |
| # time embed | |
| self.time_embed = TimestepEmbedder(embed_dim) | |
| self.time_fusion = time_fusion | |
| self.use_adanorm = False | |
| # cls embed | |
| if cls_dim is not None: | |
| self.cls_embed = nn.Sequential( | |
| nn.Linear(cls_dim, embed_dim, bias=True), | |
| nn.SiLU(), | |
| nn.Linear(embed_dim, embed_dim, bias=True),) | |
| else: | |
| self.cls_embed = None | |
| # time fusion | |
| if time_fusion == 'token': | |
| # put token at the beginning of sequence | |
| self.extras = 2 if self.cls_embed else 1 | |
| self.time_pe = PE_wrapper(dim=embed_dim, method='abs', length=self.extras) | |
| elif time_fusion in ['ada', 'ada_single', 'ada_lora', 'ada_lora_bias']: | |
| self.use_adanorm = True | |
| # aviod repetitive silu for each adaln block | |
| self.time_act = nn.SiLU() | |
| self.extras = 0 | |
| self.time_ada_final = nn.Linear(embed_dim, 2 * embed_dim, bias=True) | |
| if time_fusion in ['ada_single', 'ada_lora', 'ada_lora_bias']: | |
| # shared adaln | |
| self.time_ada = nn.Linear(embed_dim, 6 * embed_dim, bias=True) | |
| else: | |
| self.time_ada = None | |
| else: | |
| raise NotImplementedError | |
| print(f'time fusion mode: {self.time_fusion}') | |
| # context | |
| # use a simple projection | |
| self.use_context = False | |
| self.context_cross = False | |
| self.context_max_length = context_max_length | |
| self.context_fusion = 'none' | |
| if context_dim is not None: | |
| self.use_context = True | |
| self.context_embed = nn.Sequential( | |
| nn.Linear(context_dim, embed_dim, bias=True), | |
| nn.SiLU(), | |
| nn.Linear(embed_dim, embed_dim, bias=True),) | |
| self.context_fusion = context_fusion | |
| if context_fusion == 'concat' or context_fusion == 'joint': | |
| self.extras += context_max_length | |
| self.context_pe = PE_wrapper(dim=embed_dim, | |
| method=context_pe_method, | |
| length=context_max_length) | |
| # no cross attention layers | |
| context_dim = None | |
| elif context_fusion == 'cross': | |
| self.context_pe = PE_wrapper(dim=embed_dim, | |
| method=context_pe_method, | |
| length=context_max_length) | |
| self.context_cross = True | |
| context_dim = embed_dim | |
| else: | |
| raise NotImplementedError | |
| print(f'context fusion mode: {context_fusion}') | |
| print(f'context position embedding: {context_pe_method}') | |
| if self.context_fusion == 'joint': | |
| Block = JointDiTBlock | |
| self.use_skip = skip[0] | |
| else: | |
| Block = DiTBlock | |
| self.use_skip = skip | |
| # norm layers | |
| if norm_layer == 'layernorm': | |
| norm_layer = nn.LayerNorm | |
| elif norm_layer == 'rmsnorm': | |
| norm_layer = RMSNorm | |
| else: | |
| raise NotImplementedError | |
| print(f'use long skip connection: {skip}') | |
| self.in_blocks = nn.ModuleList([ | |
| Block( | |
| dim=embed_dim, context_dim=context_dim, num_heads=num_heads, | |
| mlp_ratio=mlp_ratio, | |
| qkv_bias=qkv_bias, qk_scale=qk_scale, qk_norm=qk_norm, | |
| act_layer=act_layer, norm_layer=norm_layer, | |
| time_fusion=time_fusion, | |
| ada_lora_rank=ada_lora_rank, ada_lora_alpha=ada_lora_alpha, | |
| skip=False, skip_norm=False, | |
| rope_mode=self.rope, | |
| context_norm=context_norm, | |
| use_checkpoint=use_checkpoint) | |
| for _ in range(depth // 2)]) | |
| self.mid_block = Block( | |
| dim=embed_dim, context_dim=context_dim, num_heads=num_heads, | |
| mlp_ratio=mlp_ratio, | |
| qkv_bias=qkv_bias, qk_scale=qk_scale, qk_norm=qk_norm, | |
| act_layer=act_layer, norm_layer=norm_layer, | |
| time_fusion=time_fusion, | |
| ada_lora_rank=ada_lora_rank, ada_lora_alpha=ada_lora_alpha, | |
| skip=False, skip_norm=False, | |
| rope_mode=self.rope, | |
| context_norm=context_norm, | |
| use_checkpoint=use_checkpoint) | |
| self.out_blocks = nn.ModuleList([ | |
| Block( | |
| dim=embed_dim, context_dim=context_dim, num_heads=num_heads, | |
| mlp_ratio=mlp_ratio, | |
| qkv_bias=qkv_bias, qk_scale=qk_scale, qk_norm=qk_norm, | |
| act_layer=act_layer, norm_layer=norm_layer, | |
| time_fusion=time_fusion, | |
| ada_lora_rank=ada_lora_rank, ada_lora_alpha=ada_lora_alpha, | |
| skip=skip, skip_norm=skip_norm, | |
| rope_mode=self.rope, | |
| context_norm=context_norm, | |
| use_checkpoint=use_checkpoint) | |
| for _ in range(depth // 2)]) | |
| # FinalLayer block | |
| self.use_conv = use_conv | |
| self.final_block = FinalBlock(embed_dim=embed_dim, | |
| patch_size=patch_size, | |
| img_size=img_size, | |
| in_chans=out_chans, | |
| input_type=input_type, | |
| norm_layer=norm_layer, | |
| use_conv=use_conv, | |
| use_adanorm=self.use_adanorm) | |
| self.initialize_weights() | |
| def _init_ada(self): | |
| if self.time_fusion == 'ada': | |
| nn.init.constant_(self.time_ada_final.weight, 0) | |
| nn.init.constant_(self.time_ada_final.bias, 0) | |
| for block in self.in_blocks: | |
| nn.init.constant_(block.adaln.time_ada.weight, 0) | |
| nn.init.constant_(block.adaln.time_ada.bias, 0) | |
| nn.init.constant_(self.mid_block.adaln.time_ada.weight, 0) | |
| nn.init.constant_(self.mid_block.adaln.time_ada.bias, 0) | |
| for block in self.out_blocks: | |
| nn.init.constant_(block.adaln.time_ada.weight, 0) | |
| nn.init.constant_(block.adaln.time_ada.bias, 0) | |
| elif self.time_fusion == 'ada_single': | |
| nn.init.constant_(self.time_ada.weight, 0) | |
| nn.init.constant_(self.time_ada.bias, 0) | |
| nn.init.constant_(self.time_ada_final.weight, 0) | |
| nn.init.constant_(self.time_ada_final.bias, 0) | |
| elif self.time_fusion in ['ada_lora', 'ada_lora_bias']: | |
| nn.init.constant_(self.time_ada.weight, 0) | |
| nn.init.constant_(self.time_ada.bias, 0) | |
| nn.init.constant_(self.time_ada_final.weight, 0) | |
| nn.init.constant_(self.time_ada_final.bias, 0) | |
| for block in self.in_blocks: | |
| nn.init.kaiming_uniform_(block.adaln.lora_a.weight, | |
| a=math.sqrt(5)) | |
| nn.init.constant_(block.adaln.lora_b.weight, 0) | |
| nn.init.kaiming_uniform_(self.mid_block.adaln.lora_a.weight, | |
| a=math.sqrt(5)) | |
| nn.init.constant_(self.mid_block.adaln.lora_b.weight, 0) | |
| for block in self.out_blocks: | |
| nn.init.kaiming_uniform_(block.adaln.lora_a.weight, | |
| a=math.sqrt(5)) | |
| nn.init.constant_(block.adaln.lora_b.weight, 0) | |
| def initialize_weights(self): | |
| # Basic init for all layers | |
| def _basic_init(module): | |
| if isinstance(module, nn.Linear): | |
| torch.nn.init.xavier_uniform_(module.weight) | |
| if module.bias is not None: | |
| nn.init.constant_(module.bias, 0) | |
| self.apply(_basic_init) | |
| # init patch Conv like Linear | |
| w = self.patch_embed.proj.weight.data | |
| nn.init.xavier_uniform_(w.view([w.shape[0], -1])) | |
| nn.init.constant_(self.patch_embed.proj.bias, 0) | |
| # Zero-out AdaLN | |
| if self.use_adanorm: | |
| self._init_ada() | |
| # Zero-out Cross Attention | |
| if self.context_cross: | |
| for block in self.in_blocks: | |
| nn.init.constant_(block.cross_attn.proj.weight, 0) | |
| nn.init.constant_(block.cross_attn.proj.bias, 0) | |
| nn.init.constant_(self.mid_block.cross_attn.proj.weight, 0) | |
| nn.init.constant_(self.mid_block.cross_attn.proj.bias, 0) | |
| for block in self.out_blocks: | |
| nn.init.constant_(block.cross_attn.proj.weight, 0) | |
| nn.init.constant_(block.cross_attn.proj.bias, 0) | |
| # Zero-out cls embedding | |
| if self.cls_embed: | |
| if self.use_adanorm: | |
| nn.init.constant_(self.cls_embed[-1].weight, 0) | |
| nn.init.constant_(self.cls_embed[-1].bias, 0) | |
| # Zero-out Output | |
| # might not zero-out this when using v-prediction | |
| # it could be good when using noise-prediction | |
| # nn.init.constant_(self.final_block.linear.weight, 0) | |
| # nn.init.constant_(self.final_block.linear.bias, 0) | |
| # if self.use_conv: | |
| # nn.init.constant_(self.final_block.final_layer.weight.data, 0) | |
| # nn.init.constant_(self.final_block.final_layer.bias, 0) | |
| # init out Conv | |
| if self.use_conv: | |
| nn.init.xavier_uniform_(self.final_block.final_layer.weight) | |
| nn.init.constant_(self.final_block.final_layer.bias, 0) | |
| def _concat_x_context(self, x, context, x_mask=None, context_mask=None): | |
| assert context.shape[-2] == self.context_max_length | |
| # Check if either x_mask or context_mask is provided | |
| B = x.shape[0] | |
| # Create default masks if they are not provided | |
| if x_mask is None: | |
| x_mask = torch.ones(B, x.shape[-2], device=x.device).bool() | |
| if context_mask is None: | |
| context_mask = torch.ones(B, context.shape[-2], | |
| device=context.device).bool() | |
| # Concatenate the masks along the second dimension (dim=1) | |
| x_mask = torch.cat([context_mask, x_mask], dim=1) | |
| # Concatenate context and x along the second dimension (dim=1) | |
| x = torch.cat((context, x), dim=1) | |
| return x, x_mask | |
| def forward(self, x, timesteps, context, | |
| x_mask=None, context_mask=None, | |
| cls_token=None | |
| ): | |
| # make it compatible with int time step during inference | |
| if timesteps.dim() == 0: | |
| timesteps = timesteps.expand(x.shape[0]).to(x.device, dtype=torch.long) | |
| x = self.patch_embed(x) | |
| x = self.x_pe(x) | |
| B, L, D = x.shape | |
| if self.use_context: | |
| context_token = self.context_embed(context) | |
| context_token = self.context_pe(context_token) | |
| if self.context_fusion == 'concat' or self.context_fusion == 'joint': | |
| x, x_mask = self._concat_x_context(x=x, context=context_token, | |
| x_mask=x_mask, | |
| context_mask=context_mask) | |
| context_token, context_mask = None, None | |
| else: | |
| context_token, context_mask = None, None | |
| time_token = self.time_embed(timesteps) | |
| if self.cls_embed: | |
| cls_token = self.cls_embed(cls_token) | |
| time_ada = None | |
| time_ada_final = None | |
| if self.use_adanorm: | |
| if self.cls_embed: | |
| time_token = time_token + cls_token | |
| time_token = self.time_act(time_token) | |
| time_ada_final = self.time_ada_final(time_token) | |
| if self.time_ada is not None: | |
| time_ada = self.time_ada(time_token) | |
| else: | |
| time_token = time_token.unsqueeze(dim=1) | |
| if self.cls_embed: | |
| cls_token = cls_token.unsqueeze(dim=1) | |
| time_token = torch.cat([time_token, cls_token], dim=1) | |
| time_token = self.time_pe(time_token) | |
| x = torch.cat((time_token, x), dim=1) | |
| if x_mask is not None: | |
| x_mask = torch.cat( | |
| [torch.ones(B, time_token.shape[1], device=x_mask.device).bool(), | |
| x_mask], dim=1) | |
| time_token = None | |
| skips = [] | |
| for blk in self.in_blocks: | |
| x = blk(x=x, time_token=time_token, time_ada=time_ada, | |
| skip=None, context=context_token, | |
| x_mask=x_mask, context_mask=context_mask, | |
| extras=self.extras) | |
| if self.use_skip: | |
| skips.append(x) | |
| x = self.mid_block(x=x, time_token=time_token, time_ada=time_ada, | |
| skip=None, context=context_token, | |
| x_mask=x_mask, context_mask=context_mask, | |
| extras=self.extras) | |
| for blk in self.out_blocks: | |
| skip = skips.pop() if self.use_skip else None | |
| x = blk(x=x, time_token=time_token, time_ada=time_ada, | |
| skip=skip, context=context_token, | |
| x_mask=x_mask, context_mask=context_mask, | |
| extras=self.extras) | |
| x = self.final_block(x, time_ada=time_ada_final, extras=self.extras) | |
| return x |