Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| import typing | |
| from typing import List | |
| import numpy as np | |
| from torch import nn | |
| from .. import AudioSignal | |
| from .. import STFTParams | |
| class MultiScaleSTFTLoss(nn.Module): | |
| """Computes the multi-scale STFT loss from [1]. | |
| Parameters | |
| ---------- | |
| window_lengths : List[int], optional | |
| Length of each window of each STFT, by default [2048, 512] | |
| loss_fn : typing.Callable, optional | |
| How to compare each loss, by default nn.L1Loss() | |
| clamp_eps : float, optional | |
| Clamp on the log magnitude, below, by default 1e-5 | |
| mag_weight : float, optional | |
| Weight of raw magnitude portion of loss, by default 1.0 | |
| log_weight : float, optional | |
| Weight of log magnitude portion of loss, by default 1.0 | |
| pow : float, optional | |
| Power to raise magnitude to before taking log, by default 2.0 | |
| weight : float, optional | |
| Weight of this loss, by default 1.0 | |
| match_stride : bool, optional | |
| Whether to match the stride of convolutional layers, by default False | |
| References | |
| ---------- | |
| 1. Engel, Jesse, Chenjie Gu, and Adam Roberts. | |
| "DDSP: Differentiable Digital Signal Processing." | |
| International Conference on Learning Representations. 2019. | |
| """ | |
| def __init__( | |
| self, | |
| window_lengths: List[int] = [2048, 512], | |
| loss_fn: typing.Callable = nn.L1Loss(), | |
| clamp_eps: float = 1e-5, | |
| mag_weight: float = 1.0, | |
| log_weight: float = 1.0, | |
| pow: float = 2.0, | |
| weight: float = 1.0, | |
| match_stride: bool = False, | |
| window_type: str = None, | |
| ): | |
| super().__init__() | |
| self.stft_params = [ | |
| STFTParams( | |
| window_length=w, | |
| hop_length=w // 4, | |
| match_stride=match_stride, | |
| window_type=window_type, | |
| ) | |
| for w in window_lengths | |
| ] | |
| self.loss_fn = loss_fn | |
| self.log_weight = log_weight | |
| self.mag_weight = mag_weight | |
| self.clamp_eps = clamp_eps | |
| self.weight = weight | |
| self.pow = pow | |
| def forward(self, x: AudioSignal, y: AudioSignal): | |
| """Computes multi-scale STFT between an estimate and a reference | |
| signal. | |
| Parameters | |
| ---------- | |
| x : AudioSignal | |
| Estimate signal | |
| y : AudioSignal | |
| Reference signal | |
| Returns | |
| ------- | |
| torch.Tensor | |
| Multi-scale STFT loss. | |
| """ | |
| loss = 0.0 | |
| for s in self.stft_params: | |
| x.stft(s.window_length, s.hop_length, s.window_type) | |
| y.stft(s.window_length, s.hop_length, s.window_type) | |
| loss += self.log_weight * self.loss_fn( | |
| x.magnitude.clamp(self.clamp_eps).pow(self.pow).log10(), | |
| y.magnitude.clamp(self.clamp_eps).pow(self.pow).log10(), | |
| ) | |
| loss += self.mag_weight * self.loss_fn(x.magnitude, y.magnitude) | |
| return loss | |
| class MelSpectrogramLoss(nn.Module): | |
| """Compute distance between mel spectrograms. Can be used | |
| in a multi-scale way. | |
| Parameters | |
| ---------- | |
| n_mels : List[int] | |
| Number of mels per STFT, by default [150, 80], | |
| window_lengths : List[int], optional | |
| Length of each window of each STFT, by default [2048, 512] | |
| loss_fn : typing.Callable, optional | |
| How to compare each loss, by default nn.L1Loss() | |
| clamp_eps : float, optional | |
| Clamp on the log magnitude, below, by default 1e-5 | |
| mag_weight : float, optional | |
| Weight of raw magnitude portion of loss, by default 1.0 | |
| log_weight : float, optional | |
| Weight of log magnitude portion of loss, by default 1.0 | |
| pow : float, optional | |
| Power to raise magnitude to before taking log, by default 2.0 | |
| weight : float, optional | |
| Weight of this loss, by default 1.0 | |
| match_stride : bool, optional | |
| Whether to match the stride of convolutional layers, by default False | |
| """ | |
| def __init__( | |
| self, | |
| n_mels: List[int] = [150, 80], | |
| window_lengths: List[int] = [2048, 512], | |
| loss_fn: typing.Callable = nn.L1Loss(), | |
| clamp_eps: float = 1e-5, | |
| mag_weight: float = 1.0, | |
| log_weight: float = 1.0, | |
| pow: float = 2.0, | |
| weight: float = 1.0, | |
| match_stride: bool = False, | |
| mel_fmin: List[float] = [0.0, 0.0], | |
| mel_fmax: List[float] = [None, None], | |
| window_type: str = None, | |
| ): | |
| super().__init__() | |
| self.stft_params = [ | |
| STFTParams( | |
| window_length=w, | |
| hop_length=w // 4, | |
| match_stride=match_stride, | |
| window_type=window_type, | |
| ) | |
| for w in window_lengths | |
| ] | |
| self.n_mels = n_mels | |
| self.loss_fn = loss_fn | |
| self.clamp_eps = clamp_eps | |
| self.log_weight = log_weight | |
| self.mag_weight = mag_weight | |
| self.weight = weight | |
| self.mel_fmin = mel_fmin | |
| self.mel_fmax = mel_fmax | |
| self.pow = pow | |
| def forward(self, x: AudioSignal, y: AudioSignal): | |
| """Computes mel loss between an estimate and a reference | |
| signal. | |
| Parameters | |
| ---------- | |
| x : AudioSignal | |
| Estimate signal | |
| y : AudioSignal | |
| Reference signal | |
| Returns | |
| ------- | |
| torch.Tensor | |
| Mel loss. | |
| """ | |
| loss = 0.0 | |
| for n_mels, fmin, fmax, s in zip( | |
| self.n_mels, self.mel_fmin, self.mel_fmax, self.stft_params | |
| ): | |
| kwargs = { | |
| "window_length": s.window_length, | |
| "hop_length": s.hop_length, | |
| "window_type": s.window_type, | |
| } | |
| x_mels = x.mel_spectrogram(n_mels, mel_fmin=fmin, mel_fmax=fmax, **kwargs) | |
| y_mels = y.mel_spectrogram(n_mels, mel_fmin=fmin, mel_fmax=fmax, **kwargs) | |
| loss += self.log_weight * self.loss_fn( | |
| x_mels.clamp(self.clamp_eps).pow(self.pow).log10(), | |
| y_mels.clamp(self.clamp_eps).pow(self.pow).log10(), | |
| ) | |
| loss += self.mag_weight * self.loss_fn(x_mels, y_mels) | |
| return loss | |
| class PhaseLoss(nn.Module): | |
| """Difference between phase spectrograms. | |
| Parameters | |
| ---------- | |
| window_length : int, optional | |
| Length of STFT window, by default 2048 | |
| hop_length : int, optional | |
| Hop length of STFT window, by default 512 | |
| weight : float, optional | |
| Weight of loss, by default 1.0 | |
| """ | |
| def __init__( | |
| self, window_length: int = 2048, hop_length: int = 512, weight: float = 1.0 | |
| ): | |
| super().__init__() | |
| self.weight = weight | |
| self.stft_params = STFTParams(window_length, hop_length) | |
| def forward(self, x: AudioSignal, y: AudioSignal): | |
| """Computes phase loss between an estimate and a reference | |
| signal. | |
| Parameters | |
| ---------- | |
| x : AudioSignal | |
| Estimate signal | |
| y : AudioSignal | |
| Reference signal | |
| Returns | |
| ------- | |
| torch.Tensor | |
| Phase loss. | |
| """ | |
| s = self.stft_params | |
| x.stft(s.window_length, s.hop_length, s.window_type) | |
| y.stft(s.window_length, s.hop_length, s.window_type) | |
| # Take circular difference | |
| diff = x.phase - y.phase | |
| diff[diff < -np.pi] += 2 * np.pi | |
| diff[diff > np.pi] -= -2 * np.pi | |
| # Scale true magnitude to weights in [0, 1] | |
| x_min, x_max = x.magnitude.min(), x.magnitude.max() | |
| weights = (x.magnitude - x_min) / (x_max - x_min) | |
| # Take weighted mean of all phase errors | |
| loss = ((weights * diff) ** 2).mean() | |
| return loss | |
