Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Commit
·
0483c7f
1
Parent(s):
a1bb07d
finish
Browse files- __pycache__/app.cpython-310.pyc +0 -0
- app.py +23 -4
__pycache__/app.cpython-310.pyc
CHANGED
|
Binary files a/__pycache__/app.cpython-310.pyc and b/__pycache__/app.cpython-310.pyc differ
|
|
|
app.py
CHANGED
|
@@ -49,6 +49,19 @@ def load_submissions():
|
|
| 49 |
|
| 50 |
return main_dict, challenges, categories
|
| 51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
def get_dataframe_all():
|
| 53 |
main, challenges, categories = load_submissions()
|
| 54 |
main_frame = pd.DataFrame([main])
|
|
@@ -64,6 +77,11 @@ def get_dataframe_all():
|
|
| 64 |
categories_frame = categories_frame.reset_index().rename(columns={'index': 'Category'})
|
| 65 |
challenges_frame = challenges_frame.reset_index().rename(columns={'index': 'Challenge'})
|
| 66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
return main_frame, challenges_frame, categories_frame
|
| 68 |
|
| 69 |
TITLE = "# Open Parti Prompts Leaderboard"
|
|
@@ -76,15 +94,16 @@ EXPLANATION = """\n\n
|
|
| 76 |
|
| 77 |
In the [Community Parti Prompts](https://huggingface.co/spaces/OpenGenAI/open-parti-prompts), community members select for every prompt
|
| 78 |
of [Parti Prompts](https://huggingface.co/datasets/nateraw/parti-prompts) which open-source image generation model has generated the best image.
|
| 79 |
-
The community's answers are then stored and used in this space to give a human evaluation of the different models.
|
|
|
|
| 80 |
Currently the leaderboard includes the following models:
|
| 81 |
- [sd-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5)
|
| 82 |
- [sd-v2-1](https://huggingface.co/stabilityai/stable-diffusion-2-1)
|
| 83 |
- [if-v1-0](https://huggingface.co/DeepFloyd/IF-I-XL-v1.0)
|
| 84 |
-
- [karlo](https://huggingface.co/kakaobrain/karlo-v1-alpha)
|
| 85 |
|
| 86 |
In the following you can see three result tables. The first shows you the overall preferences across all prompts. The second and third tables
|
| 87 |
-
show you a breakdown analysis per category and
|
| 88 |
"""
|
| 89 |
|
| 90 |
GALLERY_COLUMN_NUM = len(SUBMISSIONS)
|
|
@@ -101,7 +120,7 @@ with gr.Blocks() as demo:
|
|
| 101 |
headers = list(SUBMISSIONS.keys())
|
| 102 |
datatype = "str"
|
| 103 |
|
| 104 |
-
main_df,
|
| 105 |
|
| 106 |
with gr.Column():
|
| 107 |
gr.Markdown("# Open Parti Prompts")
|
|
|
|
| 49 |
|
| 50 |
return main_dict, challenges, categories
|
| 51 |
|
| 52 |
+
def sort_by_highest_percentage(df):
|
| 53 |
+
# Convert percentage values to numeric format
|
| 54 |
+
for column in df.columns.to_list():
|
| 55 |
+
df[column] = pd.to_numeric(df[column].str.rstrip('%'))
|
| 56 |
+
|
| 57 |
+
# Sort DataFrame by highest percentage first
|
| 58 |
+
df = df.sort_values(by=column, ascending=False)
|
| 59 |
+
|
| 60 |
+
# Convert back to percentage string format
|
| 61 |
+
df[column] = df[column].astype(str) + '%'
|
| 62 |
+
|
| 63 |
+
return df
|
| 64 |
+
|
| 65 |
def get_dataframe_all():
|
| 66 |
main, challenges, categories = load_submissions()
|
| 67 |
main_frame = pd.DataFrame([main])
|
|
|
|
| 77 |
categories_frame = categories_frame.reset_index().rename(columns={'index': 'Category'})
|
| 78 |
challenges_frame = challenges_frame.reset_index().rename(columns={'index': 'Challenge'})
|
| 79 |
|
| 80 |
+
main_frame = sort_by_highest_percentage(main_frame)
|
| 81 |
+
|
| 82 |
+
categories_frame = categories_frame.reindex(columns=main_frame.columns.to_list())
|
| 83 |
+
challenges_frame = challenges_frame.reindex(columns=main_frame.columns.to_list())
|
| 84 |
+
|
| 85 |
return main_frame, challenges_frame, categories_frame
|
| 86 |
|
| 87 |
TITLE = "# Open Parti Prompts Leaderboard"
|
|
|
|
| 94 |
|
| 95 |
In the [Community Parti Prompts](https://huggingface.co/spaces/OpenGenAI/open-parti-prompts), community members select for every prompt
|
| 96 |
of [Parti Prompts](https://huggingface.co/datasets/nateraw/parti-prompts) which open-source image generation model has generated the best image.
|
| 97 |
+
The community's answers are then stored and used in this space to give a human evaluation of the different models. \n\n
|
| 98 |
+
|
| 99 |
Currently the leaderboard includes the following models:
|
| 100 |
- [sd-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5)
|
| 101 |
- [sd-v2-1](https://huggingface.co/stabilityai/stable-diffusion-2-1)
|
| 102 |
- [if-v1-0](https://huggingface.co/DeepFloyd/IF-I-XL-v1.0)
|
| 103 |
+
- [karlo](https://huggingface.co/kakaobrain/karlo-v1-alpha) \n\n
|
| 104 |
|
| 105 |
In the following you can see three result tables. The first shows you the overall preferences across all prompts. The second and third tables
|
| 106 |
+
show you a breakdown analysis per category and per type of challenge as defined by [Parti Prompts](https://huggingface.co/datasets/nateraw/parti-prompts).
|
| 107 |
"""
|
| 108 |
|
| 109 |
GALLERY_COLUMN_NUM = len(SUBMISSIONS)
|
|
|
|
| 120 |
headers = list(SUBMISSIONS.keys())
|
| 121 |
datatype = "str"
|
| 122 |
|
| 123 |
+
main_df, challenge_df, category_df = get_dataframe_all()
|
| 124 |
|
| 125 |
with gr.Column():
|
| 126 |
gr.Markdown("# Open Parti Prompts")
|