import spaces
import argparse
from ast import parse
import datetime
import json
import os
import time
import hashlib
import re

import gradio as gr
import requests
import random
from filelock import FileLock
from io import BytesIO
from PIL import Image, ImageDraw, ImageFont

from constants import LOGDIR
from utils import (
    build_logger,
    server_error_msg,
    violates_moderation,
    moderation_msg,
    load_image_from_base64,
    get_log_filename,
)
from conversation import Conversation

logger = build_logger("gradio_web_server", "gradio_web_server.log")

headers = {"User-Agent": "InternVL-Chat Client"}

no_change_btn = gr.Button()
enable_btn = gr.Button(interactive=True)
disable_btn = gr.Button(interactive=False)


@spaces.GPU(duration=10)
def make_zerogpu_happy():
    pass


def write2file(path, content):
    lock = FileLock(f"{path}.lock")
    with lock:
        with open(path, "a") as fout:
            fout.write(content)


get_window_url_params = """
function() {
    const params = new URLSearchParams(window.location.search);
    url_params = Object.fromEntries(params);
    console.log(url_params);
    return url_params;
    }
"""


def init_state(state=None):
    if state is not None:
        del state
    return Conversation()


def find_bounding_boxes(state, response):
    pattern = re.compile(r"<ref>\s*(.*?)\s*</ref>\s*<box>\s*(\[\[.*?\]\])\s*</box>")
    matches = pattern.findall(response)
    results = []
    for match in matches:
        results.append((match[0], eval(match[1])))
    returned_image = None
    latest_image = state.get_images(source=state.USER)[-1]
    returned_image = latest_image.copy()
    width, height = returned_image.size
    draw = ImageDraw.Draw(returned_image)
    for result in results:
        line_width = max(1, int(min(width, height) / 200))
        random_color = (
            random.randint(0, 128),
            random.randint(0, 128),
            random.randint(0, 128),
        )
        category_name, coordinates = result
        coordinates = [
            (
                float(x[0]) / 1000,
                float(x[1]) / 1000,
                float(x[2]) / 1000,
                float(x[3]) / 1000,
            )
            for x in coordinates
        ]
        coordinates = [
            (
                int(x[0] * width),
                int(x[1] * height),
                int(x[2] * width),
                int(x[3] * height),
            )
            for x in coordinates
        ]
        for box in coordinates:
            draw.rectangle(box, outline=random_color, width=line_width)
            font = ImageFont.truetype("assets/SimHei.ttf", int(20 * line_width / 2))
            text_size = font.getbbox(category_name)
            text_width, text_height = (
                text_size[2] - text_size[0],
                text_size[3] - text_size[1],
            )
            text_position = (box[0], max(0, box[1] - text_height))
            draw.rectangle(
                [
                    text_position,
                    (text_position[0] + text_width, text_position[1] + text_height),
                ],
                fill=random_color,
            )
            draw.text(text_position, category_name, fill="white", font=font)
    return returned_image if len(matches) > 0 else None


def vote_last_response(state, liked, request: gr.Request):
    conv_data = {
        "tstamp": round(time.time(), 4),
        "like": liked,
        "model": 'InternVL2.5-78B',
        "state": state.dict(),
        "ip": request.client.host,
    }
    write2file(get_log_filename(), json.dumps(conv_data) + "\n")


def upvote_last_response(state, request: gr.Request):
    logger.info(f"upvote. ip: {request.client.host}")
    vote_last_response(state, True, request)
    textbox = gr.MultimodalTextbox(value=None, interactive=True)
    return (textbox,) + (disable_btn,) * 3


def downvote_last_response(state, request: gr.Request):
    logger.info(f"downvote. ip: {request.client.host}")
    vote_last_response(state, False, request)
    textbox = gr.MultimodalTextbox(value=None, interactive=True)
    return (textbox,) + (disable_btn,) * 3


def vote_selected_response(
    state, request: gr.Request, data: gr.LikeData
):
    logger.info(
        f"Vote: {data.liked}, index: {data.index}, value: {data.value} , ip: {request.client.host}"
    )
    conv_data = {
        "tstamp": round(time.time(), 4),
        "like": data.liked,
        "index": data.index,
        "model": 'InternVL2.5-78B',
        "state": state.dict(),
        "ip": request.client.host,
    }
    write2file(get_log_filename(), json.dumps(conv_data) + "\n")
    return


def flag_last_response(state, request: gr.Request):
    logger.info(f"flag. ip: {request.client.host}")
    vote_last_response(state, "flag", request)
    textbox = gr.MultimodalTextbox(value=None, interactive=True)
    return (textbox,) + (disable_btn,) * 3


def regenerate(state, image_process_mode, request: gr.Request):
    logger.info(f"regenerate. ip: {request.client.host}")
    # state.messages[-1][-1] = None
    state.update_message(Conversation.ASSISTANT, content='', image=None, idx=-1)
    prev_human_msg = state.messages[-2]
    if type(prev_human_msg[1]) in (tuple, list):
        prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode)
    state.skip_next = False
    textbox = gr.MultimodalTextbox(value=None, interactive=True)
    return (state, state.to_gradio_chatbot(), textbox) + (disable_btn,) * 5


def clear_history(request: gr.Request):
    logger.info(f"clear_history. ip: {request.client.host}")
    state = init_state()
    textbox = gr.MultimodalTextbox(value=None, interactive=True)
    return (state, state.to_gradio_chatbot(), textbox) + (disable_btn,) * 5


def add_text(state, message, system_prompt, request: gr.Request):
    print(f"state: {state}")
    if not state:
        state = init_state()
    images = message.get("files", [])
    text = message.get("text", "").strip()
    logger.info(f"add_text. ip: {request.client.host}. len: {len(text)}")
    # import pdb; pdb.set_trace()
    textbox = gr.MultimodalTextbox(value=None, interactive=False)
    if len(text) <= 0 and len(images) == 0:
        state.skip_next = True
        return (state, state.to_gradio_chatbot(), textbox) + (no_change_btn,) * 5
    if args.moderate:
        flagged = violates_moderation(text)
        if flagged:
            state.skip_next = True
            textbox = gr.MultimodalTextbox(
                value={"text": moderation_msg}, interactive=True
            )
            return (state, state.to_gradio_chatbot(), textbox) + (no_change_btn,) * 5
    images = [Image.open(path).convert("RGB") for path in images]

    if len(images) > 0 and len(state.get_images(source=state.USER)) > 0:
        state = init_state(state)
    state.set_system_message(system_prompt)
    state.append_message(Conversation.USER, text, images)
    state.skip_next = False
    return (state, state.to_gradio_chatbot(), textbox) + (
        disable_btn,
    ) * 5


def http_bot(
    state,
    temperature,
    top_p,
    repetition_penalty,
    max_new_tokens,
    max_input_tiles,
    request: gr.Request,
):
    model_name = 'InternVL2.5-78B'
    logger.info(f"http_bot. ip: {request.client.host}")
    start_tstamp = time.time()
    if hasattr(state, "skip_next") and state.skip_next:
        # This generate call is skipped due to invalid inputs
        yield (
            state,
            state.to_gradio_chatbot(),
            gr.MultimodalTextbox(interactive=False),
        ) + (no_change_btn,) * 5
        return

    worker_addr = os.environ.get("WORKER_ADDR", "")
    api_token = os.environ.get("API_TOKEN", "")
    # headers = {"Authorization": f"{api_token}", "Content-Type": "application/json"}
    headers = {
        "Authorization": f"Bearer {api_token}", 
        "Content-Type": "application/json", 
        "Cookie": "acw_tc=65efca1a-119e-4da4-8fd6-338f5b70f29afaa1be67470ba113e38318b0208a00b2"
    }

    # No available worker
    if worker_addr == "":
        # state.messages[-1][-1] = server_error_msg
        state.update_message(Conversation.ASSISTANT, server_error_msg)
        yield (
            state,
            state.to_gradio_chatbot(),
            gr.MultimodalTextbox(interactive=False),
            disable_btn,
            disable_btn,
            disable_btn,
            enable_btn,
            enable_btn,
        )
        return

    all_images = state.get_images(source=state.USER)
    all_image_paths = [state.save_image(image) for image in all_images]

    # Make requests
    pload = {
        "model": model_name,
        "messages": state.get_prompt_v2(inlude_image=True, max_dynamic_patch=max_input_tiles),
        "temperature": float(temperature),
        "top_p": float(top_p),
        "max_tokens": max_new_tokens,
        "repetition_penalty": repetition_penalty,
        "stream": True
    }
    logger.info(f"==== request ====\n{pload}")
    state.append_message(Conversation.ASSISTANT, state.streaming_placeholder)
    yield (
        state,
        state.to_gradio_chatbot(),
        gr.MultimodalTextbox(interactive=False),
    ) + (disable_btn,) * 5

    try:
        # Stream output
        response = requests.post(worker_addr, json=pload, headers=headers, stream=True, timeout=300)
        finnal_output = ''
        for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\n"):
            if chunk:
                chunk = chunk.decode()
                if chunk == 'data: [DONE]':
                    break
                if chunk.startswith("data:"):
                    chunk = chunk[5:]
                    chunk = json.loads(chunk)
                    output = chunk['choices'][0]['delta']['content']
                    finnal_output += output
                
                state.update_message(Conversation.ASSISTANT, finnal_output + state.streaming_placeholder, None)
                yield (
                    state,
                    state.to_gradio_chatbot(),
                    gr.MultimodalTextbox(interactive=False),
                ) + (disable_btn,) * 5
    except requests.exceptions.RequestException as e:
        state.update_message(Conversation.ASSISTANT, server_error_msg, None)
        yield (
            state,
            state.to_gradio_chatbot(),
            gr.MultimodalTextbox(interactive=True),
        ) + (
            disable_btn,
            disable_btn,
            disable_btn,
            enable_btn,
            enable_btn,
        )
        return

    ai_response = state.return_last_message()
    if "<ref>" in ai_response:
        returned_image = find_bounding_boxes(state, ai_response)
        returned_image = [returned_image] if returned_image else []
        state.update_message(Conversation.ASSISTANT, ai_response, returned_image)

    state.end_of_current_turn()

    yield (
        state,
        state.to_gradio_chatbot(),
        gr.MultimodalTextbox(interactive=True),
    ) + (enable_btn,) * 5

    finish_tstamp = time.time()
    logger.info(f"{finnal_output}")
    data = {
        "tstamp": round(finish_tstamp, 4),
        "like": None,
        "model": model_name,
        "start": round(start_tstamp, 4),
        "finish": round(start_tstamp, 4),
        "state": state.dict(),
        "images": all_image_paths,
        "ip": request.client.host,
    }
    write2file(get_log_filename(), json.dumps(data) + "\n")

# <h1 style="font-size: 28px; font-weight: bold;">Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling</h1>
title_html = """
<img src="https://internvl.opengvlab.com/assets/logo-47b364d3.jpg" style="width: 280px; height: 70px;">
<p>InternVL2.5: Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling</p>
<a href="https://internvl.github.io/blog/2024-12-05-InternVL-2.5/">[🆕 InternVL Blog]</a> 
<a href="https://huggingface.co/papers/2412.05271">[📖 InternVL Paper]</a>
<a href="https://github.com/OpenGVLab/InternVL">[🌟 Github]</a><br>
<a href="https://internvl.readthedocs.io/en/latest/">[📜 Document]</a>     
<a href="https://internvl.opengvlab.com/">[🗨ī¸ Official Demo]</a> 
"""


tos_markdown = """
### Terms of use
By using this service, users are required to agree to the following terms:
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research.
Please click the "Flag" button if you get any inappropriate answer! We will collect those to keep improving our moderator.
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
"""


# .gradio-container {margin: 5px 10px 0 10px !important};
block_css = """
.gradio-container {margin: 0.1% 1% 0 1% !important; max-width: 98% !important;};
#buttons button {
    min-width: min(120px,100%);
}

.gradient-text {
    font-size: 28px;
    width: auto;
    font-weight: bold;
    background: linear-gradient(45deg, red, orange, yellow, green, blue, indigo, violet);
    background-clip: text;
    -webkit-background-clip: text;
    color: transparent;
}

.plain-text {
    font-size: 22px;
    width: auto;
    font-weight: bold;
}
"""

js = """
function createWaveAnimation() {
    const text = document.getElementById('text');
    var i = 0;
    setInterval(function() {
        const colors = [
            'red, orange, yellow, green, blue, indigo, violet, purple',
            'orange, yellow, green, blue, indigo, violet, purple, red',
            'yellow, green, blue, indigo, violet, purple, red, orange',
            'green, blue, indigo, violet, purple, red, orange, yellow',
            'blue, indigo, violet, purple, red, orange, yellow, green',
            'indigo, violet, purple, red, orange, yellow, green, blue',
            'violet, purple, red, orange, yellow, green, blue, indigo',
            'purple, red, orange, yellow, green, blue, indigo, violet',
        ];
        const angle = 45;
        const colorIndex = i % colors.length;
        text.style.background = `linear-gradient(${angle}deg, ${colors[colorIndex]})`;
        text.style.webkitBackgroundClip = 'text';
        text.style.backgroundClip = 'text';
        text.style.color = 'transparent';
        text.style.fontSize = '28px';
        text.style.width = 'auto';
        text.textContent = 'InternVL2';
        text.style.fontWeight = 'bold';
        i += 1;
    }, 200);
    const params = new URLSearchParams(window.location.search);
    url_params = Object.fromEntries(params);
    // console.log(url_params);
    // console.log('hello world...');
    // console.log(window.location.search);
    // console.log('hello world...');
    // alert(window.location.search)
    // alert(url_params);
    return url_params;
}

"""


def build_demo():
    textbox = gr.MultimodalTextbox(
        interactive=True,
        file_types=["image", "video"],
        placeholder="Enter message or upload file...",
        show_label=False,
    )

    with gr.Blocks(
        title="InternVL-Chat",
        theme=gr.themes.Default(),
        css=block_css,
    ) as demo:
        state = gr.State()

        with gr.Row():
            with gr.Column(scale=2):
                # gr.Image('./gallery/logo-47b364d3.jpg')
                gr.HTML(title_html)

                with gr.Accordion("Settings", open=False) as setting_row:
                    system_prompt = gr.Textbox(
                        value="č¯ˇå°Ŋ可čƒŊč¯Ļįģ†åœ°å›žį­”į”¨æˆˇįš„é—Žéĸ˜ã€‚",
                        label="System Prompt",
                        interactive=True,
                    )
                    temperature = gr.Slider(
                        minimum=0.0,
                        maximum=1.0,
                        value=0.2,
                        step=0.1,
                        interactive=True,
                        label="Temperature",
                    )
                    top_p = gr.Slider(
                        minimum=0.0,
                        maximum=1.0,
                        value=0.7,
                        step=0.1,
                        interactive=True,
                        label="Top P",
                    )
                    repetition_penalty = gr.Slider(
                        minimum=1.0,
                        maximum=1.5,
                        value=1.1,
                        step=0.02,
                        interactive=True,
                        label="Repetition penalty",
                    )
                    max_output_tokens = gr.Slider(
                        minimum=0,
                        maximum=4096,
                        value=1024,
                        step=64,
                        interactive=True,
                        label="Max output tokens",
                    )
                    max_input_tiles = gr.Slider(
                        minimum=1,
                        maximum=32,
                        value=12,
                        step=1,
                        interactive=True,
                        label="Max input tiles (control the image size)",
                    )
                examples = gr.Examples(
                    examples=[
                        [
                            {
                                "files": [
                                    "gallery/14.jfif",
                                ],
                                "text": "Please help me analyze this picture.",
                            }
                        ],
                        [
                            {
                                "files": [
                                    "gallery/1-2.PNG",
                                ],
                                "text": "Implement this flow chart using python",
                            }
                        ],
                        [
                            {
                                "files": [
                                    "gallery/15.PNG",
                                ],
                                "text": "Please help me analyze this picture.",
                            }
                        ],
                    ],
                    inputs=[textbox],
                )

            with gr.Column(scale=8):
                chatbot = gr.Chatbot(
                    elem_id="chatbot",
                    label="InternVL",
                    height=580,
                    show_copy_button=True,
                    show_share_button=True,
                    avatar_images=[
                        "assets/human.png",
                        "assets/assistant.png",
                    ],
                    bubble_full_width=False,
                )
                with gr.Row():
                    with gr.Column(scale=8):
                        textbox.render()
                    with gr.Column(scale=1, min_width=50):
                        submit_btn = gr.Button(value="Send", variant="primary")
                with gr.Row(elem_id="buttons") as button_row:
                    upvote_btn = gr.Button(value="👍  Upvote", interactive=False)
                    downvote_btn = gr.Button(value="👎  Downvote", interactive=False)
                    flag_btn = gr.Button(value="⚠ī¸  Flag", interactive=False)
                    # stop_btn = gr.Button(value="⏚ī¸  Stop Generation", interactive=False)
                    regenerate_btn = gr.Button(
                        value="🔄  Regenerate", interactive=False
                    )
                    clear_btn = gr.Button(value="🗑ī¸  Clear", interactive=False)

        gr.Markdown(tos_markdown)
        url_params = gr.JSON(visible=False)

        # Register listeners
        btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn]
        upvote_btn.click(
            upvote_last_response,
            [state],
            [textbox, upvote_btn, downvote_btn, flag_btn],
        )
        downvote_btn.click(
            downvote_last_response,
            [state],
            [textbox, upvote_btn, downvote_btn, flag_btn],
        )
        chatbot.like(
            vote_selected_response,
            [state],
            [],
        )
        flag_btn.click(
            flag_last_response,
            [state],
            [textbox, upvote_btn, downvote_btn, flag_btn],
        )
        regenerate_btn.click(
            regenerate,
            [state, system_prompt],
            [state, chatbot, textbox] + btn_list,
        ).then(
            http_bot,
            [
                state,
                temperature,
                top_p,
                repetition_penalty,
                max_output_tokens,
                max_input_tiles,
            ],
            [state, chatbot, textbox] + btn_list,
        )
        clear_btn.click(clear_history, None, [state, chatbot, textbox] + btn_list)

        textbox.submit(
            add_text,
            [state, textbox, system_prompt],
            [state, chatbot, textbox] + btn_list,
        ).then(
            http_bot,
            [
                state,
                temperature,
                top_p,
                repetition_penalty,
                max_output_tokens,
                max_input_tiles,
            ],
            [state, chatbot, textbox] + btn_list,
        )
        submit_btn.click(
            add_text,
            [state, textbox, system_prompt],
            [state, chatbot, textbox] + btn_list,
        ).then(
            http_bot,
            [
                state,
                temperature,
                top_p,
                repetition_penalty,
                max_output_tokens,
                max_input_tiles,
            ],
            [state, chatbot, textbox] + btn_list,
        )

    return demo


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--host", type=str, default="0.0.0.0")
    parser.add_argument("--port", type=int, default=7860)
    parser.add_argument("--concurrency-count", type=int, default=10)
    parser.add_argument("--share", action="store_true")
    parser.add_argument("--moderate", action="store_true")
    args = parser.parse_args()
    logger.info(f"args: {args}")

    logger.info(args)
    demo = build_demo()
    demo.queue(api_open=False).launch(
        server_name=args.host,
        server_port=args.port,
        share=args.share,
        max_threads=args.concurrency_count,
    )