Spaces:
Sleeping
Sleeping
| import torch | |
| from easydict import EasyDict | |
| from lzero.policy.scaling_transform import inverse_scalar_transform | |
| class MuZeroModelFake(torch.nn.Module): | |
| """ | |
| Overview: | |
| Fake MuZero model just for test EfficientZeroMCTSPtree. | |
| Interfaces: | |
| __init__, initial_inference, recurrent_inference | |
| """ | |
| def __init__(self, action_num): | |
| super().__init__() | |
| self.action_num = action_num | |
| def initial_inference(self, observation): | |
| encoded_state = observation | |
| batch_size = encoded_state.shape[0] | |
| value = torch.zeros(size=(batch_size, 601)) | |
| value_prefix = [0. for _ in range(batch_size)] | |
| policy_logits = torch.zeros(size=(batch_size, self.action_num)) | |
| latent_state = torch.zeros(size=(batch_size, 12, 3, 3)) | |
| reward_hidden_state_state = (torch.zeros(size=(1, batch_size, 16)), torch.zeros(size=(1, batch_size, 16))) | |
| output = { | |
| 'searched_value': value, | |
| 'value_prefix': value_prefix, | |
| 'policy_logits': policy_logits, | |
| 'latent_state': latent_state, | |
| 'reward_hidden_state': reward_hidden_state_state | |
| } | |
| return EasyDict(output) | |
| def recurrent_inference(self, hidden_states, reward_hidden_states, actions): | |
| batch_size = hidden_states.shape[0] | |
| latent_state = torch.zeros(size=(batch_size, 12, 3, 3)) | |
| reward_hidden_state_state = (torch.zeros(size=(1, batch_size, 16)), torch.zeros(size=(1, batch_size, 16))) | |
| value = torch.zeros(size=(batch_size, 601)) | |
| value_prefix = torch.zeros(size=(batch_size, 601)) | |
| policy_logits = torch.zeros(size=(batch_size, self.action_num)) | |
| output = { | |
| 'searched_value': value, | |
| 'value_prefix': value_prefix, | |
| 'policy_logits': policy_logits, | |
| 'latent_state': latent_state, | |
| 'reward_hidden_state': reward_hidden_state_state | |
| } | |
| return EasyDict(output) | |
| def check_mcts(): | |
| import numpy as np | |
| from lzero.mcts.tree_search.mcts_ptree import EfficientZeroMCTSPtree as MCTSPtree | |
| policy_config = EasyDict( | |
| dict( | |
| lstm_horizon_len=5, | |
| num_simulations=8, | |
| batch_size=16, | |
| pb_c_base=1, | |
| pb_c_init=1, | |
| discount_factor=0.9, | |
| root_dirichlet_alpha=0.3, | |
| root_noise_weight=0.2, | |
| dirichlet_alpha=0.3, | |
| exploration_fraction=1, | |
| device='cpu', | |
| value_delta_max=0.01, | |
| model=dict( | |
| action_space_size=9, | |
| categorical_distribution=True, | |
| support_scale=300, | |
| ), | |
| ) | |
| ) | |
| env_nums = policy_config.batch_size | |
| model = MuZeroModelFake(action_num=100) | |
| stack_obs = torch.zeros( | |
| size=( | |
| policy_config.batch_size, | |
| 100, | |
| ), dtype=torch.float | |
| ) | |
| network_output = model.initial_inference(stack_obs.float()) | |
| latent_state_roots = network_output['latent_state'] | |
| reward_hidden_state_state = network_output['reward_hidden_state'] | |
| pred_values_pool = network_output['value'] | |
| value_prefix_pool = network_output['value_prefix'] | |
| policy_logits_pool = network_output['policy_logits'] | |
| # network output process | |
| pred_values_pool = inverse_scalar_transform(pred_values_pool, | |
| policy_config.model.support_scale).detach().cpu().numpy() | |
| latent_state_roots = latent_state_roots.detach().cpu().numpy() | |
| reward_hidden_state_state = ( | |
| reward_hidden_state_state[0].detach().cpu().numpy(), reward_hidden_state_state[1].detach().cpu().numpy() | |
| ) | |
| policy_logits_pool = policy_logits_pool.detach().cpu().numpy().tolist() | |
| legal_actions_list = [ | |
| [i for i in range(policy_config.model.action_space_size)] for _ in range(env_nums) | |
| ] # all action | |
| roots = MCTSPtree.roots(env_nums, legal_actions_list) | |
| noises = [ | |
| np.random.dirichlet([policy_config.root_dirichlet_alpha] * policy_config.model.action_space_size | |
| ).astype(np.float32).tolist() for _ in range(env_nums) | |
| ] | |
| roots.prepare(policy_config.root_noise_weight, noises, value_prefix_pool, policy_logits_pool) | |
| MCTSPtree(policy_config).search(roots, model, latent_state_roots, reward_hidden_state_state) | |
| roots_distributions = roots.get_distributions() | |
| assert np.array(roots_distributions).shape == (policy_config.batch_size, policy_config.model.action_space_size) | |
| if __name__ == '__main__': | |
| import cProfile | |
| run_num = 10 | |
| def profile_mcts(run_num): | |
| for i in range(run_num): | |
| check_mcts() | |
| # Save the analysis results to a file. | |
| cProfile.run(f"profile_mcts({run_num})", filename="result.out") | |