Spaces:
Sleeping
Sleeping
| from typing import List, Dict, Any, Tuple, Union | |
| import copy | |
| import torch | |
| from ding.torch_utils import Adam, to_device | |
| from ding.rl_utils import qrdqn_nstep_td_data, qrdqn_nstep_td_error, get_train_sample, get_nstep_return_data | |
| from ding.model import model_wrap | |
| from ding.utils import POLICY_REGISTRY | |
| from ding.utils.data import default_collate, default_decollate | |
| from .dqn import DQNPolicy | |
| from .common_utils import default_preprocess_learn | |
| class QRDQNPolicy(DQNPolicy): | |
| r""" | |
| Overview: | |
| Policy class of QRDQN algorithm. QRDQN (https://arxiv.org/pdf/1710.10044.pdf) is a distributional RL \ | |
| algorithm, which is an extension of DQN. The main idea of QRDQN is to use quantile regression to \ | |
| estimate the quantile of the distribution of the return value, and then use the quantile to calculate \ | |
| the quantile loss. | |
| Config: | |
| == ==================== ======== ============== ======================================== ======================= | |
| ID Symbol Type Default Value Description Other(Shape) | |
| == ==================== ======== ============== ======================================== ======================= | |
| 1 ``type`` str qrdqn | RL policy register name, refer to | this arg is optional, | |
| | registry ``POLICY_REGISTRY`` | a placeholder | |
| 2 ``cuda`` bool False | Whether to use cuda for network | this arg can be diff- | |
| | erent from modes | |
| 3 ``on_policy`` bool False | Whether the RL algorithm is on-policy | |
| | or off-policy | |
| 4 ``priority`` bool True | Whether use priority(PER) | priority sample, | |
| | update priority | |
| 6 | ``other.eps`` float 0.05 | Start value for epsilon decay. It's | |
| | ``.start`` | small because rainbow use noisy net. | |
| 7 | ``other.eps`` float 0.05 | End value for epsilon decay. | |
| | ``.end`` | |
| 8 | ``discount_`` float 0.97, | Reward's future discount factor, aka. | may be 1 when sparse | |
| | ``factor`` [0.95, 0.999] | gamma | reward env | |
| 9 ``nstep`` int 3, | N-step reward discount sum for target | |
| [3, 5] | q_value estimation | |
| 10 | ``learn.update`` int 3 | How many updates(iterations) to train | this args can be vary | |
| | ``per_collect`` | after collector's one collection. Only | from envs. Bigger val | |
| | valid in serial training | means more off-policy | |
| 11 ``learn.kappa`` float / | Threshold of Huber loss | |
| == ==================== ======== ============== ======================================== ======================= | |
| """ | |
| config = dict( | |
| # (str) RL policy register name (refer to function "POLICY_REGISTRY"). | |
| type='qrdqn', | |
| # (bool) Whether to use cuda for network. | |
| cuda=False, | |
| # (bool) Whether the RL algorithm is on-policy or off-policy. | |
| on_policy=False, | |
| # (bool) Whether use priority(priority sample, IS weight, update priority) | |
| priority=False, | |
| # (float) Reward's future discount factor, aka. gamma. | |
| discount_factor=0.97, | |
| # (int) N-step reward for target q_value estimation | |
| nstep=1, | |
| learn=dict( | |
| # How many updates(iterations) to train after collector's one collection. | |
| # Bigger "update_per_collect" means bigger off-policy. | |
| # collect data -> update policy-> collect data -> ... | |
| update_per_collect=3, | |
| batch_size=64, | |
| learning_rate=0.001, | |
| # ============================================================== | |
| # The following configs are algorithm-specific | |
| # ============================================================== | |
| # (int) Frequence of target network update. | |
| target_update_freq=100, | |
| # (bool) Whether ignore done(usually for max step termination env) | |
| ignore_done=False, | |
| ), | |
| # collect_mode config | |
| collect=dict( | |
| # (int) Only one of [n_sample, n_step, n_episode] shoule be set | |
| # n_sample=8, | |
| # (int) Cut trajectories into pieces with length "unroll_len". | |
| unroll_len=1, | |
| ), | |
| eval=dict(), | |
| # other config | |
| other=dict( | |
| # Epsilon greedy with decay. | |
| eps=dict( | |
| # (str) Decay type. Support ['exp', 'linear']. | |
| type='exp', | |
| start=0.95, | |
| end=0.1, | |
| # (int) Decay length(env step) | |
| decay=10000, | |
| ), | |
| replay_buffer=dict(replay_buffer_size=10000, ) | |
| ), | |
| ) | |
| def default_model(self) -> Tuple[str, List[str]]: | |
| """ | |
| Overview: | |
| Return this algorithm default neural network model setting for demonstration. ``__init__`` method will \ | |
| automatically call this method to get the default model setting and create model. | |
| Returns: | |
| - model_info (:obj:`Tuple[str, List[str]]`): The registered model name and model's import_names. | |
| """ | |
| return 'qrdqn', ['ding.model.template.q_learning'] | |
| def _init_learn(self) -> None: | |
| """ | |
| Overview: | |
| Initialize the learn mode of policy, including related attributes and modules. For QRDQN, it mainly \ | |
| contains optimizer, algorithm-specific arguments such as nstep and gamma. This method \ | |
| also executes some special network initializations and prepares running mean/std monitor for value. | |
| This method will be called in ``__init__`` method if ``learn`` field is in ``enable_field``. | |
| .. note:: | |
| For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \ | |
| and ``_load_state_dict_learn`` methods. | |
| .. note:: | |
| If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \ | |
| with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``. | |
| """ | |
| self._priority = self._cfg.priority | |
| # Optimizer | |
| self._optimizer = Adam(self._model.parameters(), lr=self._cfg.learn.learning_rate) | |
| self._gamma = self._cfg.discount_factor | |
| self._nstep = self._cfg.nstep | |
| # use model_wrapper for specialized demands of different modes | |
| self._target_model = copy.deepcopy(self._model) | |
| self._target_model = model_wrap( | |
| self._target_model, | |
| wrapper_name='target', | |
| update_type='assign', | |
| update_kwargs={'freq': self._cfg.learn.target_update_freq} | |
| ) | |
| self._learn_model = model_wrap(self._model, wrapper_name='argmax_sample') | |
| self._learn_model.reset() | |
| self._target_model.reset() | |
| def _forward_learn(self, data: dict) -> Dict[str, Any]: | |
| """ | |
| Overview: | |
| Policy forward function of learn mode (training policy and updating parameters). Forward means \ | |
| that the policy inputs some training batch data from the replay buffer and then returns the output \ | |
| result, including various training information such as loss, current lr. | |
| Arguments: | |
| - data (:obj:`dict`): Input data used for policy forward, including the \ | |
| collected training samples from replay buffer. For each element in dict, the key of the \ | |
| dict is the name of data items and the value is the corresponding data. Usually, the value is \ | |
| torch.Tensor or np.ndarray or there dict/list combinations. In the ``_forward_learn`` method, data \ | |
| often need to first be stacked in the batch dimension by some utility functions such as \ | |
| ``default_preprocess_learn``. \ | |
| For QRDQN, each element in list is a dict containing at least the following keys: ``obs``, \ | |
| ``action``, ``reward``, ``next_obs``. Sometimes, it also contains other keys such as ``weight``. | |
| Returns: | |
| - info_dict (:obj:`Dict[str, Any]`): The output result dict of forward learn, \ | |
| containing current lr, total_loss and priority. When discrete action satisfying \ | |
| len(data['action'])==1, it also could contain ``action_distribution`` which is used \ | |
| to draw histogram on tensorboard. For more information, please refer to the :class:`DQNPolicy`. | |
| .. note:: | |
| The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \ | |
| For the data type that not supported, the main reason is that the corresponding model does not support it. \ | |
| You can implement you own model rather than use the default model. For more information, please raise an \ | |
| issue in GitHub repo and we will continue to follow up. | |
| .. note:: | |
| For more detailed examples, please refer to our unittest for QRDQNPolicy: ``ding.policy.tests.test_qrdqn``. | |
| """ | |
| data = default_preprocess_learn( | |
| data, use_priority=self._priority, ignore_done=self._cfg.learn.ignore_done, use_nstep=True | |
| ) | |
| if self._cuda: | |
| data = to_device(data, self._device) | |
| # ==================== | |
| # Q-learning forward | |
| # ==================== | |
| self._learn_model.train() | |
| self._target_model.train() | |
| # Current q value (main model) | |
| ret = self._learn_model.forward(data['obs']) | |
| q_value, tau = ret['q'], ret['tau'] | |
| # Target q value | |
| with torch.no_grad(): | |
| target_q_value = self._target_model.forward(data['next_obs'])['q'] | |
| # Max q value action (main model) | |
| target_q_action = self._learn_model.forward(data['next_obs'])['action'] | |
| data_n = qrdqn_nstep_td_data( | |
| q_value, target_q_value, data['action'], target_q_action, data['reward'], data['done'], tau, data['weight'] | |
| ) | |
| value_gamma = data.get('value_gamma') | |
| loss, td_error_per_sample = qrdqn_nstep_td_error( | |
| data_n, self._gamma, nstep=self._nstep, value_gamma=value_gamma | |
| ) | |
| # ==================== | |
| # Q-learning update | |
| # ==================== | |
| self._optimizer.zero_grad() | |
| loss.backward() | |
| if self._cfg.multi_gpu: | |
| self.sync_gradients(self._learn_model) | |
| self._optimizer.step() | |
| # ============= | |
| # after update | |
| # ============= | |
| self._target_model.update(self._learn_model.state_dict()) | |
| return { | |
| 'cur_lr': self._optimizer.defaults['lr'], | |
| 'total_loss': loss.item(), | |
| 'priority': td_error_per_sample.abs().tolist(), | |
| # Only discrete action satisfying len(data['action'])==1 can return this and draw histogram on tensorboard. | |
| # '[histogram]action_distribution': data['action'], | |
| } | |
| def _state_dict_learn(self) -> Dict[str, Any]: | |
| return { | |
| 'model': self._learn_model.state_dict(), | |
| 'target_model': self._target_model.state_dict(), | |
| 'optimizer': self._optimizer.state_dict(), | |
| } | |
| def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None: | |
| self._learn_model.load_state_dict(state_dict['model']) | |
| self._target_model.load_state_dict(state_dict['target_model']) | |
| self._optimizer.load_state_dict(state_dict['optimizer']) | |