Spaces:
Sleeping
Sleeping
| from typing import List, Dict, Any | |
| import copy | |
| import torch | |
| from ding.torch_utils import Adam, to_device | |
| from ding.rl_utils import m_q_1step_td_data, m_q_1step_td_error | |
| from ding.model import model_wrap | |
| from ding.utils import POLICY_REGISTRY | |
| from .dqn import DQNPolicy | |
| from .common_utils import default_preprocess_learn | |
| class MDQNPolicy(DQNPolicy): | |
| """ | |
| Overview: | |
| Policy class of Munchausen DQN algorithm, extended by auxiliary objectives. | |
| Paper link: https://arxiv.org/abs/2007.14430. | |
| Config: | |
| == ==================== ======== ============== ======================================== ======================= | |
| ID Symbol Type Default Value Description Other(Shape) | |
| == ==================== ======== ============== ======================================== ======================= | |
| 1 ``type`` str mdqn | RL policy register name, refer to | This arg is optional, | |
| | registry ``POLICY_REGISTRY`` | a placeholder | |
| 2 ``cuda`` bool False | Whether to use cuda for network | This arg can be diff- | |
| | erent from modes | |
| 3 ``on_policy`` bool False | Whether the RL algorithm is on-policy | |
| | or off-policy | |
| 4 ``priority`` bool False | Whether use priority(PER) | Priority sample, | |
| | update priority | |
| 5 | ``priority_IS`` bool False | Whether use Importance Sampling Weight | |
| | ``_weight`` | to correct biased update. If True, | |
| | priority must be True. | |
| 6 | ``discount_`` float 0.97, | Reward's future discount factor, aka. | May be 1 when sparse | |
| | ``factor`` [0.95, 0.999] | gamma | reward env | |
| 7 ``nstep`` int 1, | N-step reward discount sum for target | |
| [3, 5] | q_value estimation | |
| 8 | ``learn.update`` int 1 | How many updates(iterations) to train | This args can be vary | |
| | ``per_collect`` | after collector's one collection. Only | from envs. Bigger val | |
| | valid in serial training | means more off-policy | |
| | ``_gpu`` | |
| 10 | ``learn.batch_`` int 32 | The number of samples of an iteration | |
| | ``size`` | |
| 11 | ``learn.learning`` float 0.001 | Gradient step length of an iteration. | |
| | ``_rate`` | |
| 12 | ``learn.target_`` int 2000 | Frequence of target network update. | Hard(assign) update | |
| | ``update_freq`` | |
| 13 | ``learn.ignore_`` bool False | Whether ignore done for target value | Enable it for some | |
| | ``done`` | calculation. | fake termination env | |
| 14 ``collect.n_sample`` int 4 | The number of training samples of a | It varies from | |
| | call of collector. | different envs | |
| 15 | ``collect.unroll`` int 1 | unroll length of an iteration | In RNN, unroll_len>1 | |
| | ``_len`` | |
| 16 | ``other.eps.type`` str exp | exploration rate decay type | Support ['exp', | |
| | 'linear']. | |
| 17 | ``other.eps.`` float 0.01 | start value of exploration rate | [0,1] | |
| | ``start`` | |
| 18 | ``other.eps.`` float 0.001 | end value of exploration rate | [0,1] | |
| | ``end`` | |
| 19 | ``other.eps.`` int 250000 | decay length of exploration | greater than 0. set | |
| | ``decay`` | decay=250000 means | |
| | the exploration rate | |
| | decay from start | |
| | value to end value | |
| | during decay length. | |
| 20 | ``entropy_tau`` float 0.003 | the ration of entropy in TD loss | |
| 21 | ``alpha`` float 0.9 | the ration of Munchausen term to the | |
| | TD loss | |
| == ==================== ======== ============== ======================================== ======================= | |
| """ | |
| config = dict( | |
| # (str) RL policy register name (refer to function "POLICY_REGISTRY"). | |
| type='mdqn', | |
| # (bool) Whether to use cuda in policy. | |
| cuda=False, | |
| # (bool) Whether learning policy is the same as collecting data policy(on-policy). | |
| on_policy=False, | |
| # (bool) Whether to enable priority experience sample. | |
| priority=False, | |
| # (bool) Whether to use Importance Sampling Weight to correct biased update. If True, priority must be True. | |
| priority_IS_weight=False, | |
| # (float) Discount factor(gamma) for returns. | |
| discount_factor=0.97, | |
| # (float) Entropy factor (tau) for Munchausen DQN. | |
| entropy_tau=0.03, | |
| # (float) Discount factor (alpha) for Munchausen term. | |
| m_alpha=0.9, | |
| # (int) The number of step for calculating target q_value. | |
| nstep=1, | |
| # learn_mode config | |
| learn=dict( | |
| # (int) How many updates(iterations) to train after collector's one collection. | |
| # Bigger "update_per_collect" means bigger off-policy. | |
| # collect data -> update policy-> collect data -> ... | |
| update_per_collect=3, | |
| # (int) How many samples in a training batch | |
| batch_size=64, | |
| # (float) The step size of gradient descent | |
| learning_rate=0.001, | |
| # (int) Frequence of target network update. | |
| target_update_freq=100, | |
| # (bool) Whether ignore done(usually for max step termination env). | |
| # Note: Gym wraps the MuJoCo envs by default with TimeLimit environment wrappers. | |
| # These limit HalfCheetah, and several other MuJoCo envs, to max length of 1000. | |
| # However, interaction with HalfCheetah always gets done with done is False, | |
| # Since we inplace done==True with done==False to keep | |
| # TD-error accurate computation(``gamma * (1 - done) * next_v + reward``), | |
| # when the episode step is greater than max episode step. | |
| ignore_done=False, | |
| ), | |
| # collect_mode config | |
| collect=dict( | |
| # (int) How many training samples collected in one collection procedure. | |
| # Only one of [n_sample, n_episode] shoule be set. | |
| n_sample=4, | |
| # (int) Split episodes or trajectories into pieces with length `unroll_len`. | |
| unroll_len=1, | |
| ), | |
| eval=dict(), # for compability | |
| # other config | |
| other=dict( | |
| # Epsilon greedy with decay. | |
| eps=dict( | |
| # (str) Decay type. Support ['exp', 'linear']. | |
| type='exp', | |
| # (float) Epsilon start value. | |
| start=0.95, | |
| # (float) Epsilon end value. | |
| end=0.1, | |
| # (int) Decay length(env step). | |
| decay=10000, | |
| ), | |
| replay_buffer=dict( | |
| # (int) Maximum size of replay buffer. Usually, larger buffer size is better. | |
| replay_buffer_size=10000, | |
| ), | |
| ), | |
| ) | |
| def _init_learn(self) -> None: | |
| """ | |
| Overview: | |
| Initialize the learn mode of policy, including related attributes and modules. For MDQN, it contains \ | |
| optimizer, algorithm-specific arguments such as entropy_tau, m_alpha and nstep, main and target model. | |
| This method will be called in ``__init__`` method if ``learn`` field is in ``enable_field``. | |
| .. note:: | |
| For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \ | |
| and ``_load_state_dict_learn`` methods. | |
| .. note:: | |
| For the member variables that need to be monitored, please refer to the ``_monitor_vars_learn`` method. | |
| .. note:: | |
| If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \ | |
| with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``. | |
| """ | |
| self._priority = self._cfg.priority | |
| self._priority_IS_weight = self._cfg.priority_IS_weight | |
| # Optimizer | |
| # set eps in order to consistent with the original paper implementation | |
| self._optimizer = Adam(self._model.parameters(), lr=self._cfg.learn.learning_rate, eps=0.0003125) | |
| self._gamma = self._cfg.discount_factor | |
| self._nstep = self._cfg.nstep | |
| self._entropy_tau = self._cfg.entropy_tau | |
| self._m_alpha = self._cfg.m_alpha | |
| # use model_wrapper for specialized demands of different modes | |
| self._target_model = copy.deepcopy(self._model) | |
| if 'target_update_freq' in self._cfg.learn: | |
| self._target_model = model_wrap( | |
| self._target_model, | |
| wrapper_name='target', | |
| update_type='assign', | |
| update_kwargs={'freq': self._cfg.learn.target_update_freq} | |
| ) | |
| elif 'target_theta' in self._cfg.learn: | |
| self._target_model = model_wrap( | |
| self._target_model, | |
| wrapper_name='target', | |
| update_type='momentum', | |
| update_kwargs={'theta': self._cfg.learn.target_theta} | |
| ) | |
| else: | |
| raise RuntimeError("DQN needs target network, please either indicate target_update_freq or target_theta") | |
| self._learn_model = model_wrap(self._model, wrapper_name='argmax_sample') | |
| self._learn_model.reset() | |
| self._target_model.reset() | |
| def _forward_learn(self, data: Dict[str, Any]) -> Dict[str, Any]: | |
| """ | |
| Overview: | |
| Policy forward function of learn mode (training policy and updating parameters). Forward means \ | |
| that the policy inputs some training batch data from the replay buffer and then returns the output \ | |
| result, including various training information such as loss, action_gap, clip_frac, priority. | |
| Arguments: | |
| - data (:obj:`List[Dict[int, Any]]`): The input data used for policy forward, including a batch of \ | |
| training samples. For each element in list, the key of the dict is the name of data items and the \ | |
| value is the corresponding data. Usually, the value is torch.Tensor or np.ndarray or there dict/list \ | |
| combinations. In the ``_forward_learn`` method, data often need to first be stacked in the batch \ | |
| dimension by some utility functions such as ``default_preprocess_learn``. \ | |
| For MDQN, each element in list is a dict containing at least the following keys: ``obs``, ``action``, \ | |
| ``reward``, ``next_obs``, ``done``. Sometimes, it also contains other keys such as ``weight`` \ | |
| and ``value_gamma``. | |
| Returns: | |
| - info_dict (:obj:`Dict[str, Any]`): The information dict that indicated training result, which will be \ | |
| recorded in text log and tensorboard, values must be python scalar or a list of scalars. For the \ | |
| detailed definition of the dict, refer to the code of ``_monitor_vars_learn`` method. | |
| .. note:: | |
| The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \ | |
| For the data type that not supported, the main reason is that the corresponding model does not support it. \ | |
| You can implement you own model rather than use the default model. For more information, please raise an \ | |
| issue in GitHub repo and we will continue to follow up. | |
| .. note:: | |
| For more detailed examples, please refer to our unittest for MDQNPolicy: ``ding.policy.tests.test_mdqn``. | |
| """ | |
| data = default_preprocess_learn( | |
| data, | |
| use_priority=self._priority, | |
| use_priority_IS_weight=self._cfg.priority_IS_weight, | |
| ignore_done=self._cfg.learn.ignore_done, | |
| use_nstep=True | |
| ) | |
| if self._cuda: | |
| data = to_device(data, self._device) | |
| # ==================== | |
| # Q-learning forward | |
| # ==================== | |
| self._learn_model.train() | |
| self._target_model.train() | |
| # Current q value (main model) | |
| q_value = self._learn_model.forward(data['obs'])['logit'] | |
| # Target q value | |
| with torch.no_grad(): | |
| target_q_value_current = self._target_model.forward(data['obs'])['logit'] | |
| target_q_value = self._target_model.forward(data['next_obs'])['logit'] | |
| data_m = m_q_1step_td_data( | |
| q_value, target_q_value_current, target_q_value, data['action'], data['reward'].squeeze(0), data['done'], | |
| data['weight'] | |
| ) | |
| loss, td_error_per_sample, action_gap, clipfrac = m_q_1step_td_error( | |
| data_m, self._gamma, self._entropy_tau, self._m_alpha | |
| ) | |
| # ==================== | |
| # Q-learning update | |
| # ==================== | |
| self._optimizer.zero_grad() | |
| loss.backward() | |
| if self._cfg.multi_gpu: | |
| self.sync_gradients(self._learn_model) | |
| self._optimizer.step() | |
| # ============= | |
| # after update | |
| # ============= | |
| self._target_model.update(self._learn_model.state_dict()) | |
| return { | |
| 'cur_lr': self._optimizer.defaults['lr'], | |
| 'total_loss': loss.item(), | |
| 'q_value': q_value.mean().item(), | |
| 'target_q_value': target_q_value.mean().item(), | |
| 'priority': td_error_per_sample.abs().tolist(), | |
| 'action_gap': action_gap.item(), | |
| 'clip_frac': clipfrac.mean().item(), | |
| } | |
| def _monitor_vars_learn(self) -> List[str]: | |
| """ | |
| Overview: | |
| Return the necessary keys for logging the return dict of ``self._forward_learn``. The logger module, such \ | |
| as text logger, tensorboard logger, will use these keys to save the corresponding data. | |
| Returns: | |
| - necessary_keys (:obj:`List[str]`): The list of the necessary keys to be logged. | |
| """ | |
| return ['cur_lr', 'total_loss', 'q_value', 'action_gap', 'clip_frac'] | |