Spaces:
Sleeping
Sleeping
| from typing import List, Dict, Any, Tuple, Union | |
| from collections import namedtuple | |
| import torch | |
| import copy | |
| import numpy as np | |
| from torch.distributions import Independent, Normal | |
| from ding.torch_utils import Adam, to_device, to_dtype, unsqueeze, ContrastiveLoss | |
| from ding.rl_utils import happo_data, happo_error, happo_policy_error, happo_policy_data, \ | |
| v_nstep_td_data, v_nstep_td_error, get_train_sample, gae, gae_data, happo_error_continuous, \ | |
| get_gae | |
| from ding.model import model_wrap | |
| from ding.utils import POLICY_REGISTRY, split_data_generator, RunningMeanStd | |
| from ding.utils.data import default_collate, default_decollate | |
| from .base_policy import Policy | |
| from .common_utils import default_preprocess_learn | |
| class HAPPOPolicy(Policy): | |
| """ | |
| Overview: | |
| Policy class of on policy version HAPPO algorithm. Paper link: https://arxiv.org/abs/2109.11251. | |
| """ | |
| config = dict( | |
| # (str) RL policy register name (refer to function "POLICY_REGISTRY"). | |
| type='happo', | |
| # (bool) Whether to use cuda for network. | |
| cuda=False, | |
| # (bool) Whether the RL algorithm is on-policy or off-policy. (Note: in practice PPO can be off-policy used) | |
| on_policy=True, | |
| # (bool) Whether to use priority(priority sample, IS weight, update priority) | |
| priority=False, | |
| # (bool) Whether to use Importance Sampling Weight to correct biased update due to priority. | |
| # If True, priority must be True. | |
| priority_IS_weight=False, | |
| # (bool) Whether to recompurete advantages in each iteration of on-policy PPO | |
| recompute_adv=True, | |
| # (str) Which kind of action space used in PPOPolicy, ['discrete', 'continuous', 'hybrid'] | |
| action_space='discrete', | |
| # (bool) Whether to use nstep return to calculate value target, otherwise, use return = adv + value | |
| nstep_return=False, | |
| # (bool) Whether to enable multi-agent training, i.e.: MAPPO | |
| multi_agent=False, | |
| # (bool) Whether to need policy data in process transition | |
| transition_with_policy_data=True, | |
| learn=dict( | |
| epoch_per_collect=10, | |
| batch_size=64, | |
| learning_rate=3e-4, | |
| # ============================================================== | |
| # The following configs is algorithm-specific | |
| # ============================================================== | |
| # (float) The loss weight of value network, policy network weight is set to 1 | |
| value_weight=0.5, | |
| # (float) The loss weight of entropy regularization, policy network weight is set to 1 | |
| entropy_weight=0.0, | |
| # (float) PPO clip ratio, defaults to 0.2 | |
| clip_ratio=0.2, | |
| # (bool) Whether to use advantage norm in a whole training batch | |
| adv_norm=True, | |
| value_norm=True, | |
| ppo_param_init=True, | |
| grad_clip_type='clip_norm', | |
| grad_clip_value=0.5, | |
| ignore_done=False, | |
| ), | |
| collect=dict( | |
| # (int) Only one of [n_sample, n_episode] shoule be set | |
| # n_sample=64, | |
| # (int) Cut trajectories into pieces with length "unroll_len". | |
| unroll_len=1, | |
| # ============================================================== | |
| # The following configs is algorithm-specific | |
| # ============================================================== | |
| # (float) Reward's future discount factor, aka. gamma. | |
| discount_factor=0.99, | |
| # (float) GAE lambda factor for the balance of bias and variance(1-step td and mc) | |
| gae_lambda=0.95, | |
| ), | |
| eval=dict(), | |
| ) | |
| def _init_learn(self) -> None: | |
| """ | |
| Overview: | |
| Initialize the learn mode of policy, including related attributes and modules. For HAPPO, it mainly \ | |
| contains optimizer, algorithm-specific arguments such as loss weight, clip_ratio and recompute_adv. This \ | |
| method also executes some special network initializations and prepares running mean/std monitor for value. | |
| This method will be called in ``__init__`` method if ``learn`` field is in ``enable_field``. | |
| .. note:: | |
| For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \ | |
| and ``_load_state_dict_learn`` methods. | |
| .. note:: | |
| For the member variables that need to be monitored, please refer to the ``_monitor_vars_learn`` method. | |
| .. note:: | |
| If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \ | |
| with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``. | |
| """ | |
| self._priority = self._cfg.priority | |
| self._priority_IS_weight = self._cfg.priority_IS_weight | |
| assert not self._priority and not self._priority_IS_weight, "Priority is not implemented in PPO" | |
| assert self._cfg.action_space in ["continuous", "discrete"] | |
| self._action_space = self._cfg.action_space | |
| if self._cfg.learn.ppo_param_init: | |
| for n, m in self._model.named_modules(): | |
| if isinstance(m, torch.nn.Linear): | |
| torch.nn.init.orthogonal_(m.weight) | |
| torch.nn.init.zeros_(m.bias) | |
| if self._action_space in ['continuous']: | |
| # init log sigma | |
| for agent_id in range(self._cfg.agent_num): | |
| # if hasattr(self._model.agent_models[agent_id].actor_head, 'log_sigma_param'): | |
| # torch.nn.init.constant_(self._model.agent_models[agent_id].actor_head.log_sigma_param, 1) | |
| # The above initialization step has been changed to reparameterizationHead. | |
| for m in list(self._model.agent_models[agent_id].critic.modules()) + \ | |
| list(self._model.agent_models[agent_id].actor.modules()): | |
| if isinstance(m, torch.nn.Linear): | |
| # orthogonal initialization | |
| torch.nn.init.orthogonal_(m.weight, gain=np.sqrt(2)) | |
| torch.nn.init.zeros_(m.bias) | |
| # do last policy layer scaling, this will make initial actions have (close to) | |
| # 0 mean and std, and will help boost performances, | |
| # see https://arxiv.org/abs/2006.05990, Fig.24 for details | |
| for m in self._model.agent_models[agent_id].actor.modules(): | |
| if isinstance(m, torch.nn.Linear): | |
| torch.nn.init.zeros_(m.bias) | |
| m.weight.data.copy_(0.01 * m.weight.data) | |
| # Add the actor/critic parameters of each HAVACAgent in HAVAC to the parameter list of actor/critic_optimizer | |
| actor_params = [] | |
| critic_params = [] | |
| for agent_idx in range(self._model.agent_num): | |
| actor_params.append({'params': self._model.agent_models[agent_idx].actor.parameters()}) | |
| critic_params.append({'params': self._model.agent_models[agent_idx].critic.parameters()}) | |
| self._actor_optimizer = Adam( | |
| actor_params, | |
| lr=self._cfg.learn.learning_rate, | |
| grad_clip_type=self._cfg.learn.grad_clip_type, | |
| clip_value=self._cfg.learn.grad_clip_value, | |
| # eps = 1e-5, | |
| ) | |
| self._critic_optimizer = Adam( | |
| critic_params, | |
| lr=self._cfg.learn.critic_learning_rate, | |
| grad_clip_type=self._cfg.learn.grad_clip_type, | |
| clip_value=self._cfg.learn.grad_clip_value, | |
| # eps = 1e-5, | |
| ) | |
| self._learn_model = model_wrap(self._model, wrapper_name='base') | |
| # self._learn_model = model_wrap( | |
| # self._model, | |
| # wrapper_name='hidden_state', | |
| # state_num=self._cfg.learn.batch_size, | |
| # init_fn=lambda: [None for _ in range(self._cfg.model.agent_num)] | |
| # ) | |
| # Algorithm config | |
| self._value_weight = self._cfg.learn.value_weight | |
| self._entropy_weight = self._cfg.learn.entropy_weight | |
| self._clip_ratio = self._cfg.learn.clip_ratio | |
| self._adv_norm = self._cfg.learn.adv_norm | |
| self._value_norm = self._cfg.learn.value_norm | |
| if self._value_norm: | |
| self._running_mean_std = RunningMeanStd(epsilon=1e-4, device=self._device) | |
| self._gamma = self._cfg.collect.discount_factor | |
| self._gae_lambda = self._cfg.collect.gae_lambda | |
| self._recompute_adv = self._cfg.recompute_adv | |
| # Main model | |
| self._learn_model.reset() | |
| def prepocess_data_agent(self, data: Dict[str, Any]): | |
| """ | |
| Overview: | |
| Preprocess data for agent dim. This function is used in learn mode. \ | |
| It will be called recursively to process nested dict data. \ | |
| It will transpose the data with shape (B, agent_num, ...) to (agent_num, B, ...). \ | |
| Arguments: | |
| - data (:obj:`dict`): Dict type data, where each element is the data of an agent of dict type. | |
| Returns: | |
| - ret (:obj:`dict`): Dict type data, where each element is the data of an agent of dict type. | |
| """ | |
| ret = {} | |
| for key, value in data.items(): | |
| if isinstance(value, dict): | |
| ret[key] = self.prepocess_data_agent(value) | |
| elif isinstance(value, torch.Tensor) and len(value.shape) > 1: | |
| ret[key] = value.transpose(0, 1) | |
| else: | |
| ret[key] = value | |
| return ret | |
| def _forward_learn(self, data: Dict[str, Any]) -> Dict[str, Any]: | |
| """ | |
| Overview: | |
| Forward and backward function of learn mode. | |
| Arguments: | |
| - data (:obj:`dict`): List type data, where each element is the data of an agent of dict type. | |
| Returns: | |
| - info_dict (:obj:`Dict[str, Any]`): | |
| Including current lr, total_loss, policy_loss, value_loss, entropy_loss, \ | |
| adv_abs_max, approx_kl, clipfrac | |
| Overview: | |
| Policy forward function of learn mode (training policy and updating parameters). Forward means \ | |
| that the policy inputs some training batch data from the replay buffer and then returns the output \ | |
| result, including various training information such as loss, clipfrac, approx_kl. | |
| Arguments: | |
| - data (:obj:`List[Dict[int, Any]]`): The input data used for policy forward, including the latest \ | |
| collected training samples for on-policy algorithms like HAPPO. For each element in list, the key of \ | |
| dict is the name of data items and the value is the corresponding data. Usually, the value is \ | |
| torch.Tensor or np.ndarray or there dict/list combinations. In the ``_forward_learn`` method, data \ | |
| often need to first be stacked in the batch dimension by some utility functions such as \ | |
| ``default_preprocess_learn``. \ | |
| For HAPPO, each element in list is a dict containing at least the following keys: ``obs``, \ | |
| ``action``, ``reward``, ``logit``, ``value``, ``done``. Sometimes, it also contains other keys \ | |
| such as ``weight``. | |
| Returns: | |
| - return_infos (:obj:`List[Dict[str, Any]]`): The information list that indicated training result, each \ | |
| training iteration contains append a information dict into the final list. The list will be precessed \ | |
| and recorded in text log and tensorboard. The value of the dict must be python scalar or a list of \ | |
| scalars. For the detailed definition of the dict, refer to the code of ``_monitor_vars_learn`` method. | |
| .. tip:: | |
| The training procedure of HAPPO is three for loops. The outermost loop trains each agent separately. \ | |
| The middle loop trains all the collected training samples with ``epoch_per_collect`` epochs. The inner \ | |
| loop splits all the data into different mini-batch with the length of ``batch_size``. | |
| .. note:: | |
| The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \ | |
| For the data type that not supported, the main reason is that the corresponding model does not support it. \ | |
| You can implement you own model rather than use the default model. For more information, please raise an \ | |
| issue in GitHub repo and we will continue to follow up. | |
| .. note:: | |
| For more detailed examples, please refer to our unittest for HAPPOPolicy: ``ding.policy.tests.test_happo``. | |
| """ | |
| data = default_preprocess_learn(data, ignore_done=self._cfg.learn.ignore_done, use_nstep=False) | |
| all_data_len = data['obs']['agent_state'].shape[0] | |
| # fator is the ratio of the old and new strategies of the first m-1 agents, initialized to 1. | |
| # Each transition has its own factor. ref: http://arxiv.org/abs/2109.11251 | |
| factor = torch.ones(all_data_len, 1) # (B, 1) | |
| if self._cuda: | |
| data = to_device(data, self._device) | |
| factor = to_device(factor, self._device) | |
| # process agent dim | |
| data = self.prepocess_data_agent(data) | |
| # ==================== | |
| # PPO forward | |
| # ==================== | |
| return_infos = [] | |
| self._learn_model.train() | |
| for agent_id in range(self._cfg.agent_num): | |
| agent_data = {} | |
| for key, value in data.items(): | |
| if value is not None: | |
| if type(value) is dict: | |
| agent_data[key] = {k: v[agent_id] for k, v in value.items()} # not feasible for rnn | |
| elif len(value.shape) > 1: | |
| agent_data[key] = data[key][agent_id] | |
| else: | |
| agent_data[key] = data[key] | |
| else: | |
| agent_data[key] = data[key] | |
| # update factor | |
| agent_data['factor'] = factor | |
| # calculate old_logits of all data in buffer for later factor | |
| inputs = { | |
| 'obs': agent_data['obs'], | |
| # 'actor_prev_state': agent_data['actor_prev_state'], | |
| # 'critic_prev_state': agent_data['critic_prev_state'], | |
| } | |
| old_logits = self._learn_model.forward(agent_id, inputs, mode='compute_actor')['logit'] | |
| for epoch in range(self._cfg.learn.epoch_per_collect): | |
| if self._recompute_adv: # calculate new value using the new updated value network | |
| with torch.no_grad(): | |
| inputs['obs'] = agent_data['obs'] | |
| # value = self._learn_model.forward(agent_id, agent_data['obs'], mode='compute_critic')['value'] | |
| value = self._learn_model.forward(agent_id, inputs, mode='compute_critic')['value'] | |
| inputs['obs'] = agent_data['next_obs'] | |
| next_value = self._learn_model.forward(agent_id, inputs, mode='compute_critic')['value'] | |
| if self._value_norm: | |
| value *= self._running_mean_std.std | |
| next_value *= self._running_mean_std.std | |
| traj_flag = agent_data.get('traj_flag', None) # traj_flag indicates termination of trajectory | |
| compute_adv_data = gae_data( | |
| value, next_value, agent_data['reward'], agent_data['done'], traj_flag | |
| ) | |
| agent_data['adv'] = gae(compute_adv_data, self._gamma, self._gae_lambda) | |
| unnormalized_returns = value + agent_data['adv'] | |
| if self._value_norm: | |
| agent_data['value'] = value / self._running_mean_std.std | |
| agent_data['return'] = unnormalized_returns / self._running_mean_std.std | |
| self._running_mean_std.update(unnormalized_returns.cpu().numpy()) | |
| else: | |
| agent_data['value'] = value | |
| agent_data['return'] = unnormalized_returns | |
| else: # don't recompute adv | |
| if self._value_norm: | |
| unnormalized_return = agent_data['adv'] + agent_data['value'] * self._running_mean_std.std | |
| agent_data['return'] = unnormalized_return / self._running_mean_std.std | |
| self._running_mean_std.update(unnormalized_return.cpu().numpy()) | |
| else: | |
| agent_data['return'] = agent_data['adv'] + agent_data['value'] | |
| for batch in split_data_generator(agent_data, self._cfg.learn.batch_size, shuffle=True): | |
| inputs = { | |
| 'obs': batch['obs'], | |
| # 'actor_prev_state': batch['actor_prev_state'], | |
| # 'critic_prev_state': batch['critic_prev_state'], | |
| } | |
| output = self._learn_model.forward(agent_id, inputs, mode='compute_actor_critic') | |
| adv = batch['adv'] | |
| if self._adv_norm: | |
| # Normalize advantage in a train_batch | |
| adv = (adv - adv.mean()) / (adv.std() + 1e-8) | |
| # Calculate happo error | |
| if self._action_space == 'continuous': | |
| happo_batch = happo_data( | |
| output['logit'], batch['logit'], batch['action'], output['value'], batch['value'], adv, | |
| batch['return'], batch['weight'], batch['factor'] | |
| ) | |
| happo_loss, happo_info = happo_error_continuous(happo_batch, self._clip_ratio) | |
| elif self._action_space == 'discrete': | |
| happo_batch = happo_data( | |
| output['logit'], batch['logit'], batch['action'], output['value'], batch['value'], adv, | |
| batch['return'], batch['weight'], batch['factor'] | |
| ) | |
| happo_loss, happo_info = happo_error(happo_batch, self._clip_ratio) | |
| wv, we = self._value_weight, self._entropy_weight | |
| total_loss = happo_loss.policy_loss + wv * happo_loss.value_loss - we * happo_loss.entropy_loss | |
| # actor update | |
| # critic update | |
| self._actor_optimizer.zero_grad() | |
| self._critic_optimizer.zero_grad() | |
| total_loss.backward() | |
| self._actor_optimizer.step() | |
| self._critic_optimizer.step() | |
| return_info = { | |
| 'agent{}_cur_lr'.format(agent_id): self._actor_optimizer.defaults['lr'], | |
| 'agent{}_total_loss'.format(agent_id): total_loss.item(), | |
| 'agent{}_policy_loss'.format(agent_id): happo_loss.policy_loss.item(), | |
| 'agent{}_value_loss'.format(agent_id): happo_loss.value_loss.item(), | |
| 'agent{}_entropy_loss'.format(agent_id): happo_loss.entropy_loss.item(), | |
| 'agent{}_adv_max'.format(agent_id): adv.max().item(), | |
| 'agent{}_adv_mean'.format(agent_id): adv.mean().item(), | |
| 'agent{}_value_mean'.format(agent_id): output['value'].mean().item(), | |
| 'agent{}_value_max'.format(agent_id): output['value'].max().item(), | |
| 'agent{}_approx_kl'.format(agent_id): happo_info.approx_kl, | |
| 'agent{}_clipfrac'.format(agent_id): happo_info.clipfrac, | |
| } | |
| if self._action_space == 'continuous': | |
| return_info.update( | |
| { | |
| 'agent{}_act'.format(agent_id): batch['action'].float().mean().item(), | |
| 'agent{}_mu_mean'.format(agent_id): output['logit']['mu'].mean().item(), | |
| 'agent{}_sigma_mean'.format(agent_id): output['logit']['sigma'].mean().item(), | |
| } | |
| ) | |
| return_infos.append(return_info) | |
| # calculate the factor | |
| inputs = { | |
| 'obs': agent_data['obs'], | |
| # 'actor_prev_state': agent_data['actor_prev_state'], | |
| } | |
| new_logits = self._learn_model.forward(agent_id, inputs, mode='compute_actor')['logit'] | |
| if self._cfg.action_space == 'discrete': | |
| dist_new = torch.distributions.categorical.Categorical(logits=new_logits) | |
| dist_old = torch.distributions.categorical.Categorical(logits=old_logits) | |
| elif self._cfg.action_space == 'continuous': | |
| dist_new = Normal(new_logits['mu'], new_logits['sigma']) | |
| dist_old = Normal(old_logits['mu'], old_logits['sigma']) | |
| logp_new = dist_new.log_prob(agent_data['action']) | |
| logp_old = dist_old.log_prob(agent_data['action']) | |
| if len(logp_new.shape) > 1: | |
| # for logp with shape(B, action_shape), we need to calculate the product of all action dimensions. | |
| factor = factor * torch.prod( | |
| torch.exp(logp_new - logp_old), dim=-1 | |
| ).reshape(all_data_len, 1).detach() # attention the shape | |
| else: | |
| # for logp with shape(B, ), directly calculate factor | |
| factor = factor * torch.exp(logp_new - logp_old).reshape(all_data_len, 1).detach() | |
| return return_infos | |
| def _state_dict_learn(self) -> Dict[str, Any]: | |
| """ | |
| Overview: | |
| Return the state_dict of learn mode optimizer and model. | |
| Returns: | |
| - state_dict (:obj:`Dict[str, Any]`): The dict of current policy learn mode. It contains the \ | |
| state_dict of current policy network and optimizer. | |
| """ | |
| return { | |
| 'model': self._learn_model.state_dict(), | |
| 'actor_optimizer': self._actor_optimizer.state_dict(), | |
| 'critic_optimizer': self._critic_optimizer.state_dict(), | |
| } | |
| def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None: | |
| """ | |
| Overview: | |
| Load the state_dict of learn mode optimizer and model. | |
| Arguments: | |
| - state_dict (:obj:`Dict[str, Any]`): The dict of policy learn mode. It contains the state_dict \ | |
| of current policy network and optimizer. | |
| """ | |
| self._learn_model.load_state_dict(state_dict['model']) | |
| self._actor_optimizer.load_state_dict(state_dict['actor_optimizer']) | |
| self._critic_optimizer.load_state_dict(state_dict['critic_optimizer']) | |
| def _init_collect(self) -> None: | |
| """ | |
| Overview: | |
| Initialize the collect mode of policy, including related attributes and modules. For HAPPO, it contains \ | |
| the collect_model to balance the exploration and exploitation (e.g. the multinomial sample mechanism in \ | |
| discrete action space), and other algorithm-specific arguments such as unroll_len and gae_lambda. | |
| This method will be called in ``__init__`` method if ``collect`` field is in ``enable_field``. | |
| .. note:: | |
| If you want to set some spacial member variables in ``_init_collect`` method, you'd better name them \ | |
| with prefix ``_collect_`` to avoid conflict with other modes, such as ``self._collect_attr1``. | |
| .. tip:: | |
| Some variables need to initialize independently in different modes, such as gamma and gae_lambda in PPO. \ | |
| This design is for the convenience of parallel execution of different policy modes. | |
| """ | |
| self._unroll_len = self._cfg.collect.unroll_len | |
| assert self._cfg.action_space in ["continuous", "discrete"] | |
| self._action_space = self._cfg.action_space | |
| if self._action_space == 'continuous': | |
| self._collect_model = model_wrap(self._model, wrapper_name='reparam_sample') | |
| elif self._action_space == 'discrete': | |
| self._collect_model = model_wrap(self._model, wrapper_name='multinomial_sample') | |
| self._collect_model.reset() | |
| self._gamma = self._cfg.collect.discount_factor | |
| self._gae_lambda = self._cfg.collect.gae_lambda | |
| self._recompute_adv = self._cfg.recompute_adv | |
| def _forward_collect(self, data: Dict[int, Any]) -> dict: | |
| """ | |
| Overview: | |
| Policy forward function of collect mode (collecting training data by interacting with envs). Forward means \ | |
| that the policy gets some necessary data (mainly observation) from the envs and then returns the output \ | |
| data, such as the action to interact with the envs. | |
| Arguments: | |
| - data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \ | |
| key of the dict is environment id and the value is the corresponding data of the env. | |
| Returns: | |
| - output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action and \ | |
| other necessary data (action logit and value) for learn mode defined in ``self._process_transition`` \ | |
| method. The key of the dict is the same as the input data, i.e. environment id. | |
| .. tip:: | |
| If you want to add more tricks on this policy, like temperature factor in multinomial sample, you can pass \ | |
| related data as extra keyword arguments of this method. | |
| .. note:: | |
| The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \ | |
| For the data type that not supported, the main reason is that the corresponding model does not support it. \ | |
| You can implement you own model rather than use the default model. For more information, please raise an \ | |
| issue in GitHub repo and we will continue to follow up. | |
| .. note:: | |
| For more detailed examples, please refer to our unittest for HAPPOPolicy: ``ding.policy.tests.test_happo``. | |
| """ | |
| data_id = list(data.keys()) | |
| data = default_collate(list(data.values())) | |
| if self._cuda: | |
| data = to_device(data, self._device) | |
| data = {k: v.transpose(0, 1) for k, v in data.items()} # not feasible for rnn | |
| self._collect_model.eval() | |
| with torch.no_grad(): | |
| outputs = [] | |
| for agent_id in range(self._cfg.agent_num): | |
| # output = self._collect_model.forward(agent_id, data, mode='compute_actor_critic') | |
| single_agent_obs = {k: v[agent_id] for k, v in data.items()} | |
| input = { | |
| 'obs': single_agent_obs, | |
| } | |
| output = self._collect_model.forward(agent_id, input, mode='compute_actor_critic') | |
| outputs.append(output) | |
| # transfer data from (M, B, N)->(B, M, N) | |
| result = {} | |
| for key in outputs[0].keys(): | |
| if isinstance(outputs[0][key], dict): | |
| subkeys = outputs[0][key].keys() | |
| stacked_subvalues = {} | |
| for subkey in subkeys: | |
| stacked_subvalues[subkey] = \ | |
| torch.stack([output[key][subkey] for output in outputs], dim=0).transpose(0, 1) | |
| result[key] = stacked_subvalues | |
| else: | |
| # If Value is tensor, stack it directly | |
| if isinstance(outputs[0][key], torch.Tensor): | |
| result[key] = torch.stack([output[key] for output in outputs], dim=0).transpose(0, 1) | |
| else: | |
| # If it is not tensor, assume that it is a non-stackable data type \ | |
| # (such as int, float, etc.), and directly retain the original value | |
| result[key] = [output[key] for output in outputs] | |
| output = result | |
| if self._cuda: | |
| output = to_device(output, 'cpu') | |
| output = default_decollate(output) | |
| return {i: d for i, d in zip(data_id, output)} | |
| def _process_transition(self, obs: Any, model_output: dict, timestep: namedtuple) -> dict: | |
| """ | |
| Overview: | |
| Process and pack one timestep transition data into a dict, which can be directly used for training and \ | |
| saved in replay buffer. For HAPPO, it contains obs, next_obs, action, reward, done, logit, value. | |
| Arguments: | |
| - obs (:obj:`torch.Tensor`): The env observation of current timestep. | |
| - policy_output (:obj:`Dict[str, torch.Tensor]`): The output of the policy network with the observation \ | |
| as input. For PPO, it contains the state value, action and the logit of the action. | |
| - timestep (:obj:`namedtuple`): The execution result namedtuple returned by the environment step method, \ | |
| except all the elements have been transformed into tensor data. Usually, it contains the next obs, \ | |
| reward, done, info, etc. | |
| Returns: | |
| - transition (:obj:`Dict[str, torch.Tensor]`): The processed transition data of the current timestep. | |
| .. note:: | |
| ``next_obs`` is used to calculate nstep return when necessary, so we place in into transition by default. \ | |
| You can delete this field to save memory occupancy if you do not need nstep return. | |
| """ | |
| transition = { | |
| 'obs': obs, | |
| 'next_obs': timestep.obs, | |
| 'action': model_output['action'], | |
| 'logit': model_output['logit'], | |
| 'value': model_output['value'], | |
| 'reward': timestep.reward, | |
| 'done': timestep.done, | |
| } | |
| return transition | |
| def _get_train_sample(self, data: list) -> Union[None, List[Any]]: | |
| """ | |
| Overview: | |
| For a given trajectory (transitions, a list of transition) data, process it into a list of sample that \ | |
| can be used for training directly. In HAPPO, a train sample is a processed transition with new computed \ | |
| ``traj_flag`` and ``adv`` field. This method is usually used in collectors to execute necessary \ | |
| RL data preprocessing before training, which can help learner amortize revelant time consumption. \ | |
| In addition, you can also implement this method as an identity function and do the data processing \ | |
| in ``self._forward_learn`` method. | |
| Arguments: | |
| - transitions (:obj:`List[Dict[str, Any]`): The trajectory data (a list of transition), each element is \ | |
| the same format as the return value of ``self._process_transition`` method. | |
| Returns: | |
| - samples (:obj:`List[Dict[str, Any]]`): The processed train samples, each element is the similar format \ | |
| as input transitions, but may contain more data for training, such as GAE advantage. | |
| """ | |
| data = to_device(data, self._device) | |
| for transition in data: | |
| transition['traj_flag'] = copy.deepcopy(transition['done']) | |
| data[-1]['traj_flag'] = True | |
| if self._cfg.learn.ignore_done: | |
| data[-1]['done'] = False | |
| if data[-1]['done']: | |
| last_value = torch.zeros_like(data[-1]['value']) | |
| else: | |
| with torch.no_grad(): | |
| last_values = [] | |
| for agent_id in range(self._cfg.agent_num): | |
| inputs = {'obs': {k: unsqueeze(v[agent_id], 0) for k, v in data[-1]['next_obs'].items()}} | |
| last_value = self._collect_model.forward(agent_id, inputs, mode='compute_actor_critic')['value'] | |
| last_values.append(last_value) | |
| last_value = torch.cat(last_values) | |
| if len(last_value.shape) == 2: # multi_agent case: | |
| last_value = last_value.squeeze(0) | |
| if self._value_norm: | |
| last_value *= self._running_mean_std.std | |
| for i in range(len(data)): | |
| data[i]['value'] *= self._running_mean_std.std | |
| data = get_gae( | |
| data, | |
| to_device(last_value, self._device), | |
| gamma=self._gamma, | |
| gae_lambda=self._gae_lambda, | |
| cuda=False, | |
| ) | |
| if self._value_norm: | |
| for i in range(len(data)): | |
| data[i]['value'] /= self._running_mean_std.std | |
| # remove next_obs for save memory when not recompute adv | |
| if not self._recompute_adv: | |
| for i in range(len(data)): | |
| data[i].pop('next_obs') | |
| return get_train_sample(data, self._unroll_len) | |
| def _init_eval(self) -> None: | |
| """ | |
| Overview: | |
| Initialize the eval mode of policy, including related attributes and modules. For PPO, it contains the \ | |
| eval model to select optimial action (e.g. greedily select action with argmax mechanism in discrete action). | |
| This method will be called in ``__init__`` method if ``eval`` field is in ``enable_field``. | |
| .. note:: | |
| If you want to set some spacial member variables in ``_init_eval`` method, you'd better name them \ | |
| with prefix ``_eval_`` to avoid conflict with other modes, such as ``self._eval_attr1``. | |
| """ | |
| assert self._cfg.action_space in ["continuous", "discrete"] | |
| self._action_space = self._cfg.action_space | |
| if self._action_space == 'continuous': | |
| self._eval_model = model_wrap(self._model, wrapper_name='deterministic_sample') | |
| elif self._action_space == 'discrete': | |
| self._eval_model = model_wrap(self._model, wrapper_name='argmax_sample') | |
| self._eval_model.reset() | |
| def _forward_eval(self, data: dict) -> dict: | |
| """ | |
| Overview: | |
| Policy forward function of eval mode (evaluation policy performance by interacting with envs). Forward \ | |
| means that the policy gets some necessary data (mainly observation) from the envs and then returns the \ | |
| action to interact with the envs. ``_forward_eval`` in HAPPO often uses deterministic sample method to \ | |
| get actions while ``_forward_collect`` usually uses stochastic sample method for balance exploration and \ | |
| exploitation. | |
| Arguments: | |
| - data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \ | |
| key of the dict is environment id and the value is the corresponding data of the env. | |
| Returns: | |
| - output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action. The \ | |
| key of the dict is the same as the input data, i.e. environment id. | |
| .. note:: | |
| The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \ | |
| For the data type that not supported, the main reason is that the corresponding model does not support it. \ | |
| You can implement you own model rather than use the default model. For more information, please raise an \ | |
| issue in GitHub repo and we will continue to follow up. | |
| .. note:: | |
| For more detailed examples, please refer to our unittest for HAPPOPolicy: ``ding.policy.tests.test_happo``. | |
| """ | |
| data_id = list(data.keys()) | |
| data = default_collate(list(data.values())) | |
| if self._cuda: | |
| data = to_device(data, self._device) | |
| # transfer data from (B, M, N)->(M, B, N) | |
| data = {k: v.transpose(0, 1) for k, v in data.items()} # not feasible for rnn | |
| self._eval_model.eval() | |
| with torch.no_grad(): | |
| outputs = [] | |
| for agent_id in range(self._cfg.agent_num): | |
| single_agent_obs = {k: v[agent_id] for k, v in data.items()} | |
| input = { | |
| 'obs': single_agent_obs, | |
| } | |
| output = self._eval_model.forward(agent_id, input, mode='compute_actor') | |
| outputs.append(output) | |
| output = self.revert_agent_data(outputs) | |
| if self._cuda: | |
| output = to_device(output, 'cpu') | |
| output = default_decollate(output) | |
| return {i: d for i, d in zip(data_id, output)} | |
| def default_model(self) -> Tuple[str, List[str]]: | |
| """ | |
| Overview: | |
| Return this algorithm default neural network model setting for demonstration. ``__init__`` method will \ | |
| automatically call this method to get the default model setting and create model. | |
| Returns: | |
| - model_info (:obj:`Tuple[str, List[str]]`): The registered model name and model's import_names. | |
| .. note:: | |
| The user can define and use customized network model but must obey the same inferface definition indicated \ | |
| by import_names path. For example about HAPPO, its registered name is ``happo`` and the import_names is \ | |
| ``ding.model.template.havac``. | |
| """ | |
| return 'havac', ['ding.model.template.havac'] | |
| def _monitor_vars_learn(self) -> List[str]: | |
| """ | |
| Overview: | |
| Return the necessary keys for logging the return dict of ``self._forward_learn``. The logger module, such \ | |
| as text logger, tensorboard logger, will use these keys to save the corresponding data. | |
| Returns: | |
| - necessary_keys (:obj:`List[str]`): The list of the necessary keys to be logged. | |
| """ | |
| variables = super()._monitor_vars_learn() + [ | |
| 'policy_loss', | |
| 'value_loss', | |
| 'entropy_loss', | |
| 'adv_max', | |
| 'adv_mean', | |
| 'approx_kl', | |
| 'clipfrac', | |
| 'value_max', | |
| 'value_mean', | |
| ] | |
| if self._action_space == 'continuous': | |
| variables += ['mu_mean', 'sigma_mean', 'sigma_grad', 'act'] | |
| prefixes = [f'agent{i}_' for i in range(self._cfg.agent_num)] | |
| variables = [prefix + var for prefix in prefixes for var in variables] | |
| return variables | |
| def revert_agent_data(self, data: list): | |
| """ | |
| Overview: | |
| Revert the data of each agent to the original data format. | |
| Arguments: | |
| - data (:obj:`list`): List type data, where each element is the data of an agent of dict type. | |
| Returns: | |
| - ret (:obj:`dict`): Dict type data, where each element is the data of an agent of dict type. | |
| """ | |
| ret = {} | |
| # Traverse all keys of the first output | |
| for key in data[0].keys(): | |
| if isinstance(data[0][key], torch.Tensor): | |
| # If the value corresponding to the current key is tensor, stack N tensors | |
| stacked_tensor = torch.stack([output[key] for output in data], dim=0) | |
| ret[key] = stacked_tensor.transpose(0, 1) | |
| elif isinstance(data[0][key], dict): | |
| # If the value corresponding to the current key is a dictionary, recursively \ | |
| # call the function to process the contents inside the dictionary. | |
| ret[key] = self.revert_agent_data([output[key] for output in data]) | |
| return ret | |