Spaces:
Sleeping
Sleeping
| from typing import List, Dict, Any, Tuple, Union, Optional | |
| from collections import namedtuple | |
| import torch | |
| import copy | |
| from ding.torch_utils import Adam, to_device | |
| from ding.rl_utils import coma_data, coma_error, get_train_sample | |
| from ding.model import model_wrap | |
| from ding.utils import POLICY_REGISTRY | |
| from ding.utils.data import default_collate, default_decollate, timestep_collate | |
| from .base_policy import Policy | |
| class COMAPolicy(Policy): | |
| r""" | |
| Overview: | |
| Policy class of COMA algorithm. COMA is a multi model reinforcement learning algorithm | |
| Interface: | |
| _init_learn, _data_preprocess_learn, _forward_learn, _reset_learn, _state_dict_learn, _load_state_dict_learn\ | |
| _init_collect, _forward_collect, _reset_collect, _process_transition, _init_eval, _forward_eval\ | |
| _reset_eval, _get_train_sample, default_model, _monitor_vars_learn | |
| Config: | |
| == ==================== ======== ============== ======================================== ======================= | |
| ID Symbol Type Default Value Description Other(Shape) | |
| == ==================== ======== ============== ======================================== ======================= | |
| 1 ``type`` str coma | RL policy register name, refer to | this arg is optional, | |
| | registry ``POLICY_REGISTRY`` | a placeholder | |
| 2 ``cuda`` bool False | Whether to use cuda for network | this arg can be diff- | |
| | erent from modes | |
| 3 ``on_policy`` bool True | Whether the RL algorithm is on-policy | |
| | or off-policy | |
| 4. ``priority`` bool False | Whether use priority(PER) | priority sample, | |
| | update priority | |
| 5 | ``priority_`` bool False | Whether use Importance Sampling | IS weight | |
| | ``IS_weight`` | Weight to correct biased update. | |
| 6 | ``learn.update`` int 1 | How many updates(iterations) to train | this args can be vary | |
| | ``_per_collect`` | after collector's one collection. Only | from envs. Bigger val | |
| | valid in serial training | means more off-policy | |
| 7 | ``learn.target_`` float 0.001 | Target network update momentum | between[0,1] | |
| | ``update_theta`` | parameter. | |
| 8 | ``learn.discount`` float 0.99 | Reward's future discount factor, aka. | may be 1 when sparse | |
| | ``_factor`` | gamma | reward env | |
| 9 | ``learn.td_`` float 0.8 | The trade-off factor of td-lambda, | |
| | ``lambda`` | which balances 1step td and mc | |
| 10 | ``learn.value_`` float 1.0 | The loss weight of value network | policy network weight | |
| | ``weight`` | is set to 1 | |
| 11 | ``learn.entropy_`` float 0.01 | The loss weight of entropy | policy network weight | |
| | ``weight`` | regularization | is set to 1 | |
| == ==================== ======== ============== ======================================== ======================= | |
| """ | |
| config = dict( | |
| # (str) RL policy register name (refer to function "POLICY_REGISTRY"). | |
| type='coma', | |
| # (bool) Whether to use cuda for network. | |
| cuda=False, | |
| # (bool) Whether the RL algorithm is on-policy or off-policy. | |
| on_policy=False, | |
| # (bool) Whether use priority(priority sample, IS weight, update priority) | |
| priority=False, | |
| # (bool) Whether use Importance Sampling Weight to correct biased update. If True, priority must be True. | |
| priority_IS_weight=False, | |
| learn=dict( | |
| update_per_collect=20, | |
| batch_size=32, | |
| learning_rate=0.0005, | |
| # ============================================================== | |
| # The following configs is algorithm-specific | |
| # ============================================================== | |
| # (float) target network update weight, theta * new_w + (1 - theta) * old_w, defaults in [0, 0.1] | |
| target_update_theta=0.001, | |
| # (float) discount factor for future reward, defaults int [0, 1] | |
| discount_factor=0.99, | |
| # (float) the trade-off factor of td-lambda, which balances 1step td and mc(nstep td in practice) | |
| td_lambda=0.8, | |
| # (float) the loss weight of policy network network | |
| policy_weight=0.001, | |
| # (float) the loss weight of value network | |
| value_weight=1, | |
| # (float) the loss weight of entropy regularization | |
| entropy_weight=0.01, | |
| ), | |
| collect=dict( | |
| # (int) collect n_sample data, train model n_iteration time | |
| # n_episode=32, | |
| # (int) unroll length of a train iteration(gradient update step) | |
| unroll_len=20, | |
| ), | |
| eval=dict(), | |
| ) | |
| def default_model(self) -> Tuple[str, List[str]]: | |
| """ | |
| Overview: | |
| Return this algorithm default model setting for demonstration. | |
| Returns: | |
| - model_info (:obj:`Tuple[str, List[str]]`): model name and mode import_names | |
| .. note:: | |
| The user can define and use customized network model but must obey the same inferface definition indicated \ | |
| by import_names path. For coma, ``ding.model.coma.coma`` | |
| """ | |
| return 'coma', ['ding.model.template.coma'] | |
| def _init_learn(self) -> None: | |
| """ | |
| Overview: | |
| Init the learner model of COMAPolicy | |
| Arguments: | |
| .. note:: | |
| The _init_learn method takes the argument from the self._cfg.learn in the config file | |
| - learning_rate (:obj:`float`): The learning rate fo the optimizer | |
| - gamma (:obj:`float`): The discount factor | |
| - lambda (:obj:`float`): The lambda factor, determining the mix of bootstrapping\ | |
| vs further accumulation of multistep returns at each timestep, | |
| - value_wight(:obj:`float`): The weight of value loss in total loss | |
| - entropy_weight(:obj:`float`): The weight of entropy loss in total loss | |
| - agent_num (:obj:`int`): Since this is a multi-agent algorithm, we need to input the agent num. | |
| - batch_size (:obj:`int`): Need batch size info to init hidden_state plugins | |
| """ | |
| self._priority = self._cfg.priority | |
| self._priority_IS_weight = self._cfg.priority_IS_weight | |
| assert not self._priority, "not implemented priority in COMA" | |
| self._optimizer = Adam(self._model.parameters(), lr=self._cfg.learn.learning_rate) | |
| self._gamma = self._cfg.learn.discount_factor | |
| self._lambda = self._cfg.learn.td_lambda | |
| self._policy_weight = self._cfg.learn.policy_weight | |
| self._value_weight = self._cfg.learn.value_weight | |
| self._entropy_weight = self._cfg.learn.entropy_weight | |
| self._target_model = copy.deepcopy(self._model) | |
| self._target_model = model_wrap( | |
| self._target_model, | |
| wrapper_name='target', | |
| update_type='momentum', | |
| update_kwargs={'theta': self._cfg.learn.target_update_theta} | |
| ) | |
| self._target_model = model_wrap( | |
| self._target_model, | |
| wrapper_name='hidden_state', | |
| state_num=self._cfg.learn.batch_size, | |
| init_fn=lambda: [None for _ in range(self._cfg.model.agent_num)] | |
| ) | |
| self._learn_model = model_wrap( | |
| self._model, | |
| wrapper_name='hidden_state', | |
| state_num=self._cfg.learn.batch_size, | |
| init_fn=lambda: [None for _ in range(self._cfg.model.agent_num)] | |
| ) | |
| self._learn_model.reset() | |
| self._target_model.reset() | |
| def _data_preprocess_learn(self, data: List[Any]) -> dict: | |
| r""" | |
| Overview: | |
| Preprocess the data to fit the required data format for learning | |
| Arguments: | |
| - data (:obj:`List[Dict[str, Any]]`): the data collected from collect function, the Dict | |
| in data should contain keys including at least ['obs', 'action', 'reward'] | |
| Returns: | |
| - data (:obj:`Dict[str, Any]`): the processed data, including at least \ | |
| ['obs', 'action', 'reward', 'done', 'weight'] | |
| """ | |
| # data preprocess | |
| data = timestep_collate(data) | |
| assert set(data.keys()) > set(['obs', 'action', 'reward']) | |
| if self._cuda: | |
| data = to_device(data, self._device) | |
| data['weight'] = data.get('weight', None) | |
| data['done'] = data['done'].float() | |
| return data | |
| def _forward_learn(self, data: dict) -> Dict[str, Any]: | |
| r""" | |
| Overview: | |
| Forward and backward function of learn mode, acquire the data and calculate the loss and\ | |
| optimize learner model | |
| Arguments: | |
| - data (:obj:`Dict[str, Any]`): Dict type data, a batch of data for training, values are torch.Tensor or \ | |
| np.ndarray or dict/list combinations. | |
| Returns: | |
| - info_dict (:obj:`Dict[str, Any]`): Dict type data, a info dict indicated training result, which will be \ | |
| recorded in text log and tensorboard, values are python scalar or a list of scalars. | |
| ArgumentsKeys: | |
| - necessary: ``obs``, ``action``, ``reward``, ``done``, ``weight`` | |
| ReturnsKeys: | |
| - necessary: ``cur_lr``, ``total_loss``, ``policy_loss``, ``value_loss``, ``entropy_loss`` | |
| - cur_lr (:obj:`float`): Current learning rate | |
| - total_loss (:obj:`float`): The calculated loss | |
| - policy_loss (:obj:`float`): The policy(actor) loss of coma | |
| - value_loss (:obj:`float`): The value(critic) loss of coma | |
| - entropy_loss (:obj:`float`): The entropy loss | |
| """ | |
| data = self._data_preprocess_learn(data) | |
| # forward | |
| self._learn_model.train() | |
| self._target_model.train() | |
| self._learn_model.reset(state=data['prev_state'][0]) | |
| self._target_model.reset(state=data['prev_state'][0]) | |
| q_value = self._learn_model.forward(data, mode='compute_critic')['q_value'] | |
| with torch.no_grad(): | |
| target_q_value = self._target_model.forward(data, mode='compute_critic')['q_value'] | |
| logit = self._learn_model.forward(data, mode='compute_actor')['logit'] | |
| logit[data['obs']['action_mask'] == 0.0] = -9999999 | |
| data = coma_data(logit, data['action'], q_value, target_q_value, data['reward'], data['weight']) | |
| coma_loss = coma_error(data, self._gamma, self._lambda) | |
| total_loss = self._policy_weight * coma_loss.policy_loss + self._value_weight * coma_loss.q_value_loss - \ | |
| self._entropy_weight * coma_loss.entropy_loss | |
| # update | |
| self._optimizer.zero_grad() | |
| total_loss.backward() | |
| self._optimizer.step() | |
| # after update | |
| self._target_model.update(self._learn_model.state_dict()) | |
| return { | |
| 'cur_lr': self._optimizer.defaults['lr'], | |
| 'total_loss': total_loss.item(), | |
| 'policy_loss': coma_loss.policy_loss.item(), | |
| 'value_loss': coma_loss.q_value_loss.item(), | |
| 'entropy_loss': coma_loss.entropy_loss.item(), | |
| } | |
| def _reset_learn(self, data_id: Optional[List[int]] = None) -> None: | |
| self._learn_model.reset(data_id=data_id) | |
| def _state_dict_learn(self) -> Dict[str, Any]: | |
| return { | |
| 'model': self._learn_model.state_dict(), | |
| 'target_model': self._target_model.state_dict(), | |
| 'optimizer': self._optimizer.state_dict(), | |
| } | |
| def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None: | |
| self._learn_model.load_state_dict(state_dict['model']) | |
| self._target_model.load_state_dict(state_dict['target_model']) | |
| self._optimizer.load_state_dict(state_dict['optimizer']) | |
| def _init_collect(self) -> None: | |
| r""" | |
| Overview: | |
| Collect mode init moethod. Called by ``self.__init__``. | |
| Init traj and unroll length, collect model. | |
| Model has eps_greedy_sample wrapper and hidden state wrapper | |
| """ | |
| self._unroll_len = self._cfg.collect.unroll_len | |
| self._collect_model = model_wrap( | |
| self._model, | |
| wrapper_name='hidden_state', | |
| state_num=self._cfg.collect.env_num, | |
| save_prev_state=True, | |
| init_fn=lambda: [None for _ in range(self._cfg.model.agent_num)] | |
| ) | |
| self._collect_model = model_wrap(self._collect_model, wrapper_name='eps_greedy_sample') | |
| self._collect_model.reset() | |
| def _forward_collect(self, data: dict, eps: float) -> dict: | |
| r""" | |
| Overview: | |
| Collect output according to eps_greedy plugin | |
| Arguments: | |
| - data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \ | |
| values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer. | |
| - eps (:obj:`float`): epsilon value for exploration, which is decayed by collected env step. | |
| Returns: | |
| - output (:obj:`Dict[int, Any]`): Dict type data, including at least inferred action according to input obs. | |
| ReturnsKeys | |
| - necessary: ``action`` | |
| """ | |
| data_id = list(data.keys()) | |
| data = default_collate(list(data.values())) | |
| if self._cuda: | |
| data = to_device(data, self._device) | |
| data = {'obs': data} | |
| self._collect_model.eval() | |
| with torch.no_grad(): | |
| output = self._collect_model.forward(data, eps=eps, data_id=data_id, mode='compute_actor') | |
| if self._cuda: | |
| output = to_device(output, 'cpu') | |
| output = default_decollate(output) | |
| return {i: d for i, d in zip(data_id, output)} | |
| def _reset_collect(self, data_id: Optional[List[int]] = None) -> None: | |
| self._collect_model.reset(data_id=data_id) | |
| def _process_transition(self, obs: Any, model_output: dict, timestep: namedtuple) -> dict: | |
| r""" | |
| Overview: | |
| Generate dict type transition data from inputs. | |
| Arguments: | |
| - obs (:obj:`Any`): Env observation | |
| - model_output (:obj:`dict`): Output of collect model, including at least ['action', 'prev_state'] | |
| - timestep (:obj:`namedtuple`): Output after env step, including at least ['obs', 'reward', 'done'] \ | |
| (here 'obs' indicates obs after env step). | |
| Returns: | |
| - transition (:obj:`dict`): Dict type transition data. | |
| """ | |
| transition = { | |
| 'obs': obs, | |
| 'next_obs': timestep.obs, | |
| 'prev_state': model_output['prev_state'], | |
| 'action': model_output['action'], | |
| 'reward': timestep.reward, | |
| 'done': timestep.done, | |
| } | |
| return transition | |
| def _init_eval(self) -> None: | |
| r""" | |
| Overview: | |
| Evaluate mode init method. Called by ``self.__init__``. | |
| Init eval model with argmax strategy and hidden_state plugin. | |
| """ | |
| self._eval_model = model_wrap( | |
| self._model, | |
| wrapper_name='hidden_state', | |
| state_num=self._cfg.eval.env_num, | |
| save_prev_state=True, | |
| init_fn=lambda: [None for _ in range(self._cfg.model.agent_num)] | |
| ) | |
| self._eval_model = model_wrap(self._eval_model, wrapper_name='argmax_sample') | |
| self._eval_model.reset() | |
| def _forward_eval(self, data: dict) -> dict: | |
| r""" | |
| Overview: | |
| Forward function of eval mode, similar to ``self._forward_collect``. | |
| Arguments: | |
| - data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \ | |
| values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer. | |
| Returns: | |
| - output (:obj:`Dict[int, Any]`): The dict of predicting action for the interaction with env. | |
| ReturnsKeys | |
| - necessary: ``action`` | |
| """ | |
| data_id = list(data.keys()) | |
| data = default_collate(list(data.values())) | |
| if self._cuda: | |
| data = to_device(data, self._device) | |
| data = {'obs': data} | |
| self._eval_model.eval() | |
| with torch.no_grad(): | |
| output = self._eval_model.forward(data, data_id=data_id, mode='compute_actor') | |
| if self._cuda: | |
| output = to_device(output, 'cpu') | |
| output = default_decollate(output) | |
| return {i: d for i, d in zip(data_id, output)} | |
| def _reset_eval(self, data_id: Optional[List[int]] = None) -> None: | |
| self._eval_model.reset(data_id=data_id) | |
| def _get_train_sample(self, data: list) -> Union[None, List[Any]]: | |
| r""" | |
| Overview: | |
| Get the train sample from trajectory | |
| Arguments: | |
| - data (:obj:`list`): The trajectory's cache | |
| Returns: | |
| - samples (:obj:`dict`): The training samples generated | |
| """ | |
| return get_train_sample(data, self._unroll_len) | |
| def _monitor_vars_learn(self) -> List[str]: | |
| r""" | |
| Overview: | |
| Return variables' name if variables are to used in monitor. | |
| Returns: | |
| - vars (:obj:`List[str]`): Variables' name list. | |
| """ | |
| return super()._monitor_vars_learn() + ['policy_loss', 'value_loss', 'entropy_loss'] | |