Spaces:
Sleeping
Sleeping
| from typing import List, Dict, Any, Tuple, Union | |
| import copy | |
| import torch | |
| from ding.torch_utils import Adam, to_device | |
| from ding.rl_utils import dist_nstep_td_data, dist_nstep_td_error, get_train_sample, get_nstep_return_data | |
| from ding.model import model_wrap | |
| from ding.utils import POLICY_REGISTRY | |
| from ding.utils.data import default_collate, default_decollate | |
| from .dqn import DQNPolicy | |
| from .common_utils import default_preprocess_learn | |
| class C51Policy(DQNPolicy): | |
| r""" | |
| Overview: | |
| Policy class of C51 algorithm. | |
| Config: | |
| == ==================== ======== ============== ======================================== ======================= | |
| ID Symbol Type Default Value Description Other(Shape) | |
| == ==================== ======== ============== ======================================== ======================= | |
| 1 ``type`` str c51 | RL policy register name, refer to | this arg is optional, | |
| | registry ``POLICY_REGISTRY`` | a placeholder | |
| 2 ``cuda`` bool False | Whether to use cuda for network | this arg can be diff- | |
| | erent from modes | |
| 3 ``on_policy`` bool False | Whether the RL algorithm is on-policy | |
| | or off-policy | |
| 4 ``priority`` bool False | Whether use priority(PER) | priority sample, | |
| | update priority | |
| 5 ``model.v_min`` float -10 | Value of the smallest atom | |
| | in the support set. | |
| 6 ``model.v_max`` float 10 | Value of the largest atom | |
| | in the support set. | |
| 7 ``model.n_atom`` int 51 | Number of atoms in the support set | |
| | of the value distribution. | |
| 8 | ``other.eps`` float 0.95 | Start value for epsilon decay. | |
| | ``.start`` | | |
| 9 | ``other.eps`` float 0.1 | End value for epsilon decay. | |
| | ``.end`` | |
| 10 | ``discount_`` float 0.97, | Reward's future discount factor, aka. | may be 1 when sparse | |
| | ``factor`` [0.95, 0.999] | gamma | reward env | |
| 11 ``nstep`` int 1, | N-step reward discount sum for target | |
| | q_value estimation | |
| 12 | ``learn.update`` int 3 | How many updates(iterations) to train | this args can be vary | |
| | ``per_collect`` | after collector's one collection. Only | from envs. Bigger val | |
| | valid in serial training | means more off-policy | |
| == ==================== ======== ============== ======================================== ======================= | |
| """ | |
| config = dict( | |
| # (str) RL policy register name (refer to function "POLICY_REGISTRY"). | |
| type='c51', | |
| # (bool) Whether to use cuda for network. | |
| cuda=False, | |
| # (bool) Whether the RL algorithm is on-policy or off-policy. | |
| on_policy=False, | |
| # (bool) Whether use priority(priority sample, IS weight, update priority) | |
| priority=False, | |
| # (float) Reward's future discount factor, aka. gamma. | |
| discount_factor=0.97, | |
| # (int) N-step reward for target q_value estimation | |
| nstep=1, | |
| model=dict( | |
| v_min=-10, | |
| v_max=10, | |
| n_atom=51, | |
| ), | |
| learn=dict( | |
| # How many updates(iterations) to train after collector's one collection. | |
| # Bigger "update_per_collect" means bigger off-policy. | |
| # collect data -> update policy-> collect data -> ... | |
| update_per_collect=3, | |
| batch_size=64, | |
| learning_rate=0.001, | |
| # ============================================================== | |
| # The following configs are algorithm-specific | |
| # ============================================================== | |
| # (int) Frequence of target network update. | |
| target_update_freq=100, | |
| # (bool) Whether ignore done(usually for max step termination env) | |
| ignore_done=False, | |
| ), | |
| # collect_mode config | |
| collect=dict( | |
| # (int) Only one of [n_sample, n_step, n_episode] shoule be set | |
| # n_sample=8, | |
| # (int) Cut trajectories into pieces with length "unroll_len". | |
| unroll_len=1, | |
| ), | |
| eval=dict(), | |
| # other config | |
| other=dict( | |
| # Epsilon greedy with decay. | |
| eps=dict( | |
| # (str) Decay type. Support ['exp', 'linear']. | |
| type='exp', | |
| start=0.95, | |
| end=0.1, | |
| # (int) Decay length(env step) | |
| decay=10000, | |
| ), | |
| replay_buffer=dict(replay_buffer_size=10000, ) | |
| ), | |
| ) | |
| def default_model(self) -> Tuple[str, List[str]]: | |
| return 'c51dqn', ['ding.model.template.q_learning'] | |
| def _init_learn(self) -> None: | |
| r""" | |
| Overview: | |
| Learn mode init method. Called by ``self.__init__``. | |
| Init the optimizer, algorithm config, main and target models. | |
| """ | |
| self._priority = self._cfg.priority | |
| # Optimizer | |
| self._optimizer = Adam(self._model.parameters(), lr=self._cfg.learn.learning_rate) | |
| self._gamma = self._cfg.discount_factor | |
| self._nstep = self._cfg.nstep | |
| self._v_max = self._cfg.model.v_max | |
| self._v_min = self._cfg.model.v_min | |
| self._n_atom = self._cfg.model.n_atom | |
| # use wrapper instead of plugin | |
| self._target_model = copy.deepcopy(self._model) | |
| self._target_model = model_wrap( | |
| self._target_model, | |
| wrapper_name='target', | |
| update_type='assign', | |
| update_kwargs={'freq': self._cfg.learn.target_update_freq} | |
| ) | |
| self._learn_model = model_wrap(self._model, wrapper_name='argmax_sample') | |
| self._learn_model.reset() | |
| self._target_model.reset() | |
| def _forward_learn(self, data: dict) -> Dict[str, Any]: | |
| r""" | |
| Overview: | |
| Forward and backward function of learn mode. | |
| Arguments: | |
| - data (:obj:`dict`): Dict type data, including at least ['obs', 'action', 'reward', 'next_obs'] | |
| Returns: | |
| - info_dict (:obj:`Dict[str, Any]`): Including current lr and loss. | |
| """ | |
| data = default_preprocess_learn( | |
| data, use_priority=self._priority, ignore_done=self._cfg.learn.ignore_done, use_nstep=True | |
| ) | |
| if self._cuda: | |
| data = to_device(data, self._device) | |
| # ==================== | |
| # Q-learning forward | |
| # ==================== | |
| self._learn_model.train() | |
| self._target_model.train() | |
| # Current q value (main model) | |
| output = self._learn_model.forward(data['obs']) | |
| q_value = output['logit'] | |
| q_value_dist = output['distribution'] | |
| # Target q value | |
| with torch.no_grad(): | |
| target_output = self._target_model.forward(data['next_obs']) | |
| target_q_value_dist = target_output['distribution'] | |
| target_q_value = target_output['logit'] | |
| # Max q value action (main model) | |
| target_q_action = self._learn_model.forward(data['next_obs'])['action'] | |
| data_n = dist_nstep_td_data( | |
| q_value_dist, target_q_value_dist, data['action'], target_q_action, data['reward'], data['done'], | |
| data['weight'] | |
| ) | |
| value_gamma = data.get('value_gamma') | |
| loss, td_error_per_sample = dist_nstep_td_error( | |
| data_n, self._gamma, self._v_min, self._v_max, self._n_atom, nstep=self._nstep, value_gamma=value_gamma | |
| ) | |
| # ==================== | |
| # Q-learning update | |
| # ==================== | |
| self._optimizer.zero_grad() | |
| loss.backward() | |
| if self._cfg.multi_gpu: | |
| self.sync_gradients(self._learn_model) | |
| self._optimizer.step() | |
| # ============= | |
| # after update | |
| # ============= | |
| self._target_model.update(self._learn_model.state_dict()) | |
| return { | |
| 'cur_lr': self._optimizer.defaults['lr'], | |
| 'total_loss': loss.item(), | |
| 'q_value': q_value.mean().item(), | |
| 'target_q_value': target_q_value.mean().item(), | |
| 'priority': td_error_per_sample.abs().tolist(), | |
| # Only discrete action satisfying len(data['action'])==1 can return this and draw histogram on tensorboard. | |
| # '[histogram]action_distribution': data['action'], | |
| } | |
| def _monitor_vars_learn(self) -> List[str]: | |
| return ['cur_lr', 'total_loss', 'q_value', 'target_q_value'] | |
| def _state_dict_learn(self) -> Dict[str, Any]: | |
| return { | |
| 'model': self._learn_model.state_dict(), | |
| 'target_model': self._target_model.state_dict(), | |
| 'optimizer': self._optimizer.state_dict(), | |
| } | |
| def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None: | |
| self._learn_model.load_state_dict(state_dict['model']) | |
| self._target_model.load_state_dict(state_dict['target_model']) | |
| self._optimizer.load_state_dict(state_dict['optimizer']) | |
| def _init_collect(self) -> None: | |
| """ | |
| Overview: | |
| Collect mode init method. Called by ``self.__init__``. Initialize necessary arguments for nstep return \ | |
| calculation and collect_model for exploration (eps_greedy_sample). | |
| """ | |
| self._unroll_len = self._cfg.collect.unroll_len | |
| self._gamma = self._cfg.discount_factor # necessary for parallel | |
| self._nstep = self._cfg.nstep # necessary for parallel | |
| self._collect_model = model_wrap(self._model, wrapper_name='eps_greedy_sample') | |
| self._collect_model.reset() | |
| def _forward_collect(self, data: Dict[int, Any], eps: float) -> Dict[int, Any]: | |
| """ | |
| Overview: | |
| Forward computation graph of collect mode(collect training data), with eps_greedy for exploration. | |
| Arguments: | |
| - data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \ | |
| values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer. | |
| - eps (:obj:`float`): epsilon value for exploration, which is decayed by collected env step. | |
| Returns: | |
| - output (:obj:`Dict[int, Any]`): The dict of predicting policy_output(action) for the interaction with \ | |
| env and the constructing of transition. | |
| ArgumentsKeys: | |
| - necessary: ``obs`` | |
| ReturnsKeys | |
| - necessary: ``logit``, ``action`` | |
| """ | |
| data_id = list(data.keys()) | |
| data = default_collate(list(data.values())) | |
| if self._cuda: | |
| data = to_device(data, self._device) | |
| self._collect_model.eval() | |
| with torch.no_grad(): | |
| output = self._collect_model.forward(data, eps=eps) | |
| if self._cuda: | |
| output = to_device(output, 'cpu') | |
| output = default_decollate(output) | |
| return {i: d for i, d in zip(data_id, output)} | |
| def _get_train_sample(self, data: list) -> Union[None, List[Any]]: | |
| """ | |
| Overview: | |
| Calculate nstep return data and transform a trajectory into many train samples. | |
| Arguments: | |
| - data (:obj:`list`): The collected data of a trajectory, which is a list that contains dict elements. | |
| Returns: | |
| - samples (:obj:`dict`): The training samples generated. | |
| """ | |
| data = get_nstep_return_data(data, self._nstep, gamma=self._gamma) | |
| return get_train_sample(data, self._unroll_len) | |