Spaces:
Sleeping
Sleeping
| from collections import namedtuple | |
| from typing import List, Dict, Any, Tuple | |
| import copy | |
| import torch | |
| from ding.model import model_wrap | |
| from ding.rl_utils import get_train_sample, compute_q_retraces, acer_policy_error,\ | |
| acer_value_error, acer_trust_region_update | |
| from ding.torch_utils import Adam, RMSprop, to_device | |
| from ding.utils import POLICY_REGISTRY | |
| from ding.utils.data import default_collate, default_decollate | |
| from ding.policy.base_policy import Policy | |
| EPS = 1e-8 | |
| class ACERPolicy(Policy): | |
| r""" | |
| Overview: | |
| Policy class of ACER algorithm. | |
| Config: | |
| == ======================= ======== ============== ===================================== ======================= | |
| ID Symbol Type Default Value Description Other(Shape) | |
| == ======================= ======== ============== ===================================== ======================= | |
| 1 ``type`` str acer | RL policy register name, refer to | this arg is optional, | |
| | registry ``POLICY_REGISTRY`` | a placeholder | |
| 2 ``cuda`` bool False | Whether to use cuda for network | this arg can be diff- | |
| | | erent from modes | |
| 3 ``on_policy`` bool False | Whether the RL algorithm is | |
| | on-policy or off-policy | |
| 4 ``trust_region`` bool True | Whether the RL algorithm use trust | | |
| | region constraint | | |
| 5 ``trust_region_value`` float 1.0 | maximum range of the trust region | | |
| 6 ``unroll_len`` int 32 | trajectory length to calculate | |
| | Q retrace target | |
| 7 ``learn.update`` int 4 | How many updates(iterations) to | this args can be vary | |
| ``per_collect`` | train after collector's one | from envs. Bigger val | |
| | collection. Only | | |
| | valid in serial training | means more off-policy | |
| 8 ``c_clip_ratio`` float 1.0 | clip ratio of importance weights | | |
| == ======================= ======== ============== ===================================== ======================= | |
| """ | |
| unroll_len = 32 | |
| config = dict( | |
| type='acer', | |
| cuda=False, | |
| # (bool) whether use on-policy training pipeline(behaviour policy and training policy are the same) | |
| # here we follow ppo serial pipeline, the original is False | |
| on_policy=False, | |
| priority=False, | |
| # (bool) Whether use Importance Sampling Weight to correct biased update. If True, priority must be True. | |
| priority_IS_weight=False, | |
| learn=dict( | |
| # (str) the type of gradient clip method | |
| grad_clip_type=None, | |
| # (float) max value when ACER use gradient clip | |
| clip_value=None, | |
| # (int) collect n_sample data, train model update_per_collect times | |
| # here we follow ppo serial pipeline | |
| update_per_collect=4, | |
| # (int) the number of data for a train iteration | |
| batch_size=16, | |
| # (float) loss weight of the value network, the weight of policy network is set to 1 | |
| value_weight=0.5, | |
| # (float) loss weight of the entropy regularization, the weight of policy network is set to 1 | |
| entropy_weight=0.0001, | |
| # (float) discount factor for future reward, defaults int [0, 1] | |
| discount_factor=0.9, | |
| # (float) additional discounting parameter | |
| lambda_=0.95, | |
| # (int) the trajectory length to calculate v-trace target | |
| unroll_len=unroll_len, | |
| # (float) clip ratio of importance weights | |
| c_clip_ratio=10, | |
| trust_region=True, | |
| trust_region_value=1.0, | |
| learning_rate_actor=0.0005, | |
| learning_rate_critic=0.0005, | |
| target_theta=0.01 | |
| ), | |
| collect=dict( | |
| # (int) collect n_sample data, train model n_iteration times | |
| # n_sample=16, | |
| # (int) the trajectory length to calculate v-trace target | |
| unroll_len=unroll_len, | |
| # (float) discount factor for future reward, defaults int [0, 1] | |
| discount_factor=0.9, | |
| gae_lambda=0.95, | |
| collector=dict( | |
| type='sample', | |
| collect_print_freq=1000, | |
| ), | |
| ), | |
| eval=dict(evaluator=dict(eval_freq=200, ), ), | |
| other=dict(replay_buffer=dict( | |
| replay_buffer_size=1000, | |
| max_use=16, | |
| ), ), | |
| ) | |
| def default_model(self) -> Tuple[str, List[str]]: | |
| return 'acer', ['ding.model.template.acer'] | |
| def _init_learn(self) -> None: | |
| r""" | |
| Overview: | |
| Learn mode init method. Called by ``self.__init__``. | |
| Initialize the optimizer, algorithm config and main model. | |
| """ | |
| # Optimizer | |
| self._optimizer_actor = Adam( | |
| self._model.actor.parameters(), | |
| lr=self._cfg.learn.learning_rate_actor, | |
| grad_clip_type=self._cfg.learn.grad_clip_type, | |
| clip_value=self._cfg.learn.clip_value | |
| ) | |
| self._optimizer_critic = Adam( | |
| self._model.critic.parameters(), | |
| lr=self._cfg.learn.learning_rate_critic, | |
| ) | |
| self._target_model = copy.deepcopy(self._model) | |
| self._target_model = model_wrap( | |
| self._target_model, | |
| wrapper_name='target', | |
| update_type='momentum', | |
| update_kwargs={'theta': self._cfg.learn.target_theta} | |
| ) | |
| self._learn_model = model_wrap(self._model, wrapper_name='base') | |
| self._action_shape = self._cfg.model.action_shape | |
| self._unroll_len = self._cfg.learn.unroll_len | |
| # Algorithm config | |
| self._priority = self._cfg.priority | |
| self._priority_IS_weight = self._cfg.priority_IS_weight | |
| self._value_weight = self._cfg.learn.value_weight | |
| self._entropy_weight = self._cfg.learn.entropy_weight | |
| self._gamma = self._cfg.learn.discount_factor | |
| # self._rho_clip_ratio = self._cfg.learn.rho_clip_ratio | |
| self._c_clip_ratio = self._cfg.learn.c_clip_ratio | |
| # self._rho_pg_clip_ratio = self._cfg.learn.rho_pg_clip_ratio | |
| self._use_trust_region = self._cfg.learn.trust_region | |
| self._trust_region_value = self._cfg.learn.trust_region_value | |
| # Main model | |
| self._learn_model.reset() | |
| self._target_model.reset() | |
| def _data_preprocess_learn(self, data: List[Dict[str, Any]]): | |
| """ | |
| Overview: | |
| Data preprocess function of learn mode. | |
| Convert list trajectory data to to trajectory data, which is a dict of tensors. | |
| Arguments: | |
| - data (:obj:`List[Dict[str, Any]]`): List type data, a list of data for training. Each list element is a \ | |
| dict, whose values are torch.Tensor or np.ndarray or dict/list combinations, keys include at least 'obs',\ | |
| 'next_obs', 'logit', 'action', 'reward', 'done' | |
| Returns: | |
| - data (:obj:`dict`): Dict type data. Values are torch.Tensor or np.ndarray or dict/list combinations. \ | |
| ReturnsKeys: | |
| - necessary: 'logit', 'action', 'reward', 'done', 'weight', 'obs_plus_1'. | |
| - optional and not used in later computation: 'obs', 'next_obs'.'IS', 'collect_iter', 'replay_unique_id', \ | |
| 'replay_buffer_idx', 'priority', 'staleness', 'use'. | |
| ReturnsShapes: | |
| - obs_plus_1 (:obj:`torch.FloatTensor`): :math:`(T * B, obs_shape)`, where T is timestep, B is batch size \ | |
| and obs_shape is the shape of single env observation | |
| - logit (:obj:`torch.FloatTensor`): :math:`(T, B, N)`, where N is action dim | |
| - action (:obj:`torch.LongTensor`): :math:`(T, B)` | |
| - reward (:obj:`torch.FloatTensor`): :math:`(T+1, B)` | |
| - done (:obj:`torch.FloatTensor`): :math:`(T, B)` | |
| - weight (:obj:`torch.FloatTensor`): :math:`(T, B)` | |
| """ | |
| data = default_collate(data) | |
| if self._cuda: | |
| data = to_device(data, self._device) | |
| data['weight'] = data.get('weight', None) | |
| # shape (T+1)*B,env_obs_shape | |
| data['obs_plus_1'] = torch.cat((data['obs'] + data['next_obs'][-1:]), dim=0) | |
| data['logit'] = torch.cat( | |
| data['logit'], dim=0 | |
| ).reshape(self._unroll_len, -1, self._action_shape) # shape T,B,env_action_shape | |
| data['action'] = torch.cat(data['action'], dim=0).reshape(self._unroll_len, -1) # shape T,B, | |
| data['done'] = torch.cat(data['done'], dim=0).reshape(self._unroll_len, -1).float() # shape T,B, | |
| data['reward'] = torch.cat(data['reward'], dim=0).reshape(self._unroll_len, -1) # shape T,B, | |
| data['weight'] = torch.cat( | |
| data['weight'], dim=0 | |
| ).reshape(self._unroll_len, -1) if data['weight'] else None # shape T,B | |
| return data | |
| def _forward_learn(self, data: List[Dict[str, Any]]) -> Dict[str, Any]: | |
| r""" | |
| Overview: | |
| Forward computation graph of learn mode(updating policy). | |
| Arguments: | |
| - data (:obj:`List[Dict[str, Any]]`): List type data, a list of data for training. Each list element is a \ | |
| dict, whose values are torch.Tensor or np.ndarray or dict/list combinations, keys include at least 'obs',\ | |
| 'next_obs', 'logit', 'action', 'reward', 'done' | |
| Returns: | |
| - info_dict (:obj:`Dict[str, Any]`): Dict type data, a info dict indicated training result, which will be \ | |
| recorded in text log and tensorboard, values are python scalar or a list of scalars. | |
| ArgumentsKeys: | |
| - necessary: ``obs``, ``action``, ``reward``, ``next_obs``, ``done`` | |
| - optional: 'collect_iter', 'replay_unique_id', 'replay_buffer_idx', 'priority', 'staleness', 'use', 'IS' | |
| ReturnsKeys: | |
| - necessary: ``cur_lr_actor``, ``cur_lr_critic``, ``actor_loss`,``bc_loss``,``policy_loss``,\ | |
| ``critic_loss``,``entropy_loss`` | |
| """ | |
| data = self._data_preprocess_learn(data) | |
| self._learn_model.train() | |
| action_data = self._learn_model.forward(data['obs_plus_1'], mode='compute_actor') | |
| q_value_data = self._learn_model.forward(data['obs_plus_1'], mode='compute_critic') | |
| avg_action_data = self._target_model.forward(data['obs_plus_1'], mode='compute_actor') | |
| target_logit, behaviour_logit, avg_logit, actions, q_values, rewards, weights = self._reshape_data( | |
| action_data, avg_action_data, q_value_data, data | |
| ) | |
| # shape (T+1),B,env_action_shape | |
| target_logit = torch.log_softmax(target_logit, dim=-1) | |
| # shape T,B,env_action_shape | |
| behaviour_logit = torch.log_softmax(behaviour_logit, dim=-1) | |
| # shape (T+1),B,env_action_shape | |
| avg_logit = torch.log_softmax(avg_logit, dim=-1) | |
| with torch.no_grad(): | |
| # shape T,B,env_action_shape | |
| ratio = torch.exp(target_logit[0:-1] - behaviour_logit) | |
| # shape (T+1),B,1 | |
| v_pred = (q_values * torch.exp(target_logit)).sum(-1).unsqueeze(-1) | |
| # Calculate retrace | |
| q_retraces = compute_q_retraces(q_values, v_pred, rewards, actions, weights, ratio, self._gamma) | |
| # the terminal states' weights are 0. it needs to be shift to count valid state | |
| weights_ext = torch.ones_like(weights) | |
| weights_ext[1:] = weights[0:-1] | |
| weights = weights_ext | |
| q_retraces = q_retraces[0:-1] # shape T,B,1 | |
| q_values = q_values[0:-1] # shape T,B,env_action_shape | |
| v_pred = v_pred[0:-1] # shape T,B,1 | |
| target_logit = target_logit[0:-1] # shape T,B,env_action_shape | |
| avg_logit = avg_logit[0:-1] # shape T,B,env_action_shape | |
| total_valid = weights.sum() # 1 | |
| # ==================== | |
| # policy update | |
| # ==================== | |
| actor_loss, bc_loss = acer_policy_error( | |
| q_values, q_retraces, v_pred, target_logit, actions, ratio, self._c_clip_ratio | |
| ) | |
| actor_loss = actor_loss * weights.unsqueeze(-1) | |
| bc_loss = bc_loss * weights.unsqueeze(-1) | |
| dist_new = torch.distributions.categorical.Categorical(logits=target_logit) | |
| entropy_loss = (dist_new.entropy() * weights).unsqueeze(-1) # shape T,B,1 | |
| total_actor_loss = (actor_loss + bc_loss + self._entropy_weight * entropy_loss).sum() / total_valid | |
| self._optimizer_actor.zero_grad() | |
| actor_gradients = torch.autograd.grad(-total_actor_loss, target_logit, retain_graph=True) | |
| if self._use_trust_region: | |
| actor_gradients = acer_trust_region_update( | |
| actor_gradients, target_logit, avg_logit, self._trust_region_value | |
| ) | |
| target_logit.backward(actor_gradients) | |
| self._optimizer_actor.step() | |
| # ==================== | |
| # critic update | |
| # ==================== | |
| critic_loss = (acer_value_error(q_values, q_retraces, actions) * weights.unsqueeze(-1)).sum() / total_valid | |
| self._optimizer_critic.zero_grad() | |
| critic_loss.backward() | |
| self._optimizer_critic.step() | |
| self._target_model.update(self._learn_model.state_dict()) | |
| with torch.no_grad(): | |
| kl_div = torch.exp(avg_logit) * (avg_logit - target_logit) | |
| kl_div = (kl_div.sum(-1) * weights).sum() / total_valid | |
| return { | |
| 'cur_actor_lr': self._optimizer_actor.defaults['lr'], | |
| 'cur_critic_lr': self._optimizer_critic.defaults['lr'], | |
| 'actor_loss': (actor_loss.sum() / total_valid).item(), | |
| 'bc_loss': (bc_loss.sum() / total_valid).item(), | |
| 'policy_loss': total_actor_loss.item(), | |
| 'critic_loss': critic_loss.item(), | |
| 'entropy_loss': (entropy_loss.sum() / total_valid).item(), | |
| 'kl_div': kl_div.item() | |
| } | |
| def _reshape_data( | |
| self, action_data: Dict[str, Any], avg_action_data: Dict[str, Any], q_value_data: Dict[str, Any], | |
| data: Dict[str, Any] | |
| ) -> Tuple[Any, Any, Any, Any, Any, Any]: | |
| r""" | |
| Overview: | |
| Obtain weights for loss calculating, where should be 0 for done positions | |
| Update values and rewards with the weight | |
| Arguments: | |
| - output (:obj:`Dict[int, Any]`): Dict type data, output of learn_model forward. \ | |
| Values are torch.Tensor or np.ndarray or dict/list combinations,keys are value, logit. | |
| - data (:obj:`Dict[int, Any]`): Dict type data, input of policy._forward_learn \ | |
| Values are torch.Tensor or np.ndarray or dict/list combinations. Keys includes at \ | |
| least ['logit', 'action', 'reward', 'done',] | |
| Returns: | |
| - data (:obj:`Tuple[Any]`): Tuple of target_logit, behaviour_logit, actions, \ | |
| values, rewards, weights | |
| ReturnsShapes: | |
| - target_logit (:obj:`torch.FloatTensor`): :math:`((T+1), B, Obs_Shape)`, where T is timestep,\ | |
| B is batch size and Obs_Shape is the shape of single env observation. | |
| - behaviour_logit (:obj:`torch.FloatTensor`): :math:`(T, B, N)`, where N is action dim. | |
| - avg_action_logit (:obj:`torch.FloatTensor`): :math: `(T+1, B, N)`, where N is action dim. | |
| - actions (:obj:`torch.LongTensor`): :math:`(T, B)` | |
| - values (:obj:`torch.FloatTensor`): :math:`(T+1, B)` | |
| - rewards (:obj:`torch.FloatTensor`): :math:`(T, B)` | |
| - weights (:obj:`torch.FloatTensor`): :math:`(T, B)` | |
| """ | |
| target_logit = action_data['logit'].reshape( | |
| self._unroll_len + 1, -1, self._action_shape | |
| ) # shape (T+1),B,env_action_shape | |
| behaviour_logit = data['logit'] # shape T,B,env_action_shape | |
| avg_action_logit = avg_action_data['logit'].reshape( | |
| self._unroll_len + 1, -1, self._action_shape | |
| ) # shape (T+1),B,env_action_shape | |
| actions = data['action'] # shape T,B | |
| values = q_value_data['q_value'].reshape( | |
| self._unroll_len + 1, -1, self._action_shape | |
| ) # shape (T+1),B,env_action_shape | |
| rewards = data['reward'] # shape T,B | |
| weights_ = 1 - data['done'] # shape T,B | |
| weights = torch.ones_like(rewards) # shape T,B | |
| weights = weights_ | |
| return target_logit, behaviour_logit, avg_action_logit, actions, values, rewards, weights | |
| def _state_dict_learn(self) -> Dict[str, Any]: | |
| r""" | |
| Overview: | |
| Return the state_dict of learn mode, usually including model and optimizer. | |
| Returns: | |
| - state_dict (:obj:`Dict[str, Any]`): the dict of current policy learn state, for saving and restoring. | |
| """ | |
| return { | |
| 'model': self._learn_model.state_dict(), | |
| 'target_model': self._target_model.state_dict(), | |
| 'actor_optimizer': self._optimizer_actor.state_dict(), | |
| 'critic_optimizer': self._optimizer_critic.state_dict(), | |
| } | |
| def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None: | |
| r""" | |
| Overview: | |
| Load the state_dict variable into policy learn mode. | |
| Arguments: | |
| - state_dict (:obj:`Dict[str, Any]`): the dict of policy learn state saved before. | |
| .. tip:: | |
| If you want to only load some parts of model, you can simply set the ``strict`` argument in \ | |
| load_state_dict to ``False``, or refer to ``ding.torch_utils.checkpoint_helper`` for more \ | |
| complicated operation. | |
| """ | |
| self._learn_model.load_state_dict(state_dict['model']) | |
| self._target_model.load_state_dict(state_dict['target_model']) | |
| self._optimizer_actor.load_state_dict(state_dict['actor_optimizer']) | |
| self._optimizer_critic.load_state_dict(state_dict['critic_optimizer']) | |
| def _init_collect(self) -> None: | |
| r""" | |
| Overview: | |
| Collect mode init method. Called by ``self.__init__``, initialize algorithm arguments and collect_model. | |
| Use multinomial_sample to choose action. | |
| """ | |
| self._collect_unroll_len = self._cfg.collect.unroll_len | |
| self._collect_model = model_wrap(self._model, wrapper_name='multinomial_sample') | |
| self._collect_model.reset() | |
| def _forward_collect(self, data: Dict[int, Any]) -> Dict[int, Dict[str, Any]]: | |
| r""" | |
| Overview: | |
| Forward computation graph of collect mode(collect training data). | |
| Arguments: | |
| - data (:obj:`Dict[int, Any]`): Dict type data, stacked env data for predicting \ | |
| action, values are torch.Tensor or np.ndarray or dict/list combinations,keys \ | |
| are env_id indicated by integer. | |
| Returns: | |
| - output (:obj:`Dict[int, Dict[str,Any]]`): Dict of predicting policy_output(logit, action) for each env. | |
| ReturnsKeys | |
| - necessary: ``logit``, ``action`` | |
| """ | |
| data_id = list(data.keys()) | |
| data = default_collate(list(data.values())) | |
| if self._cuda: | |
| data = to_device(data, self._device) | |
| self._collect_model.eval() | |
| with torch.no_grad(): | |
| output = self._collect_model.forward(data, mode='compute_actor') | |
| if self._cuda: | |
| output = to_device(output, 'cpu') | |
| output = default_decollate(output) | |
| output = {i: d for i, d in zip(data_id, output)} | |
| return output | |
| def _get_train_sample(self, data: List[Dict[str, Any]]) -> List[Dict[str, Any]]: | |
| r""" | |
| Overview: | |
| For a given trajectory(transitions, a list of transition) data, process it into a list of sample that \ | |
| can be used for training directly. | |
| Arguments: | |
| - data (:obj:`List[Dict[str, Any]`): The trajectory data(a list of transition), each element is the same \ | |
| format as the return value of ``self._process_transition`` method. | |
| Returns: | |
| - samples (:obj:`dict`): List of training samples. | |
| .. note:: | |
| We will vectorize ``process_transition`` and ``get_train_sample`` method in the following release version. \ | |
| And the user can customize the this data processing procedure by overriding this two methods and collector \ | |
| itself. | |
| """ | |
| return get_train_sample(data, self._unroll_len) | |
| def _process_transition(self, obs: Any, policy_output: Dict[str, Any], timestep: namedtuple) -> Dict[str, Any]: | |
| r""" | |
| Overview: | |
| Generate dict type transition data from inputs. | |
| Arguments: | |
| - obs (:obj:`Any`): Env observation,can be torch.Tensor or np.ndarray or dict/list combinations. | |
| - model_output (:obj:`dict`): Output of collect model, including ['logit','action'] | |
| - timestep (:obj:`namedtuple`): Output after env step, including at least ['obs', 'reward', 'done']\ | |
| (here 'obs' indicates obs after env step). | |
| Returns: | |
| - transition (:obj:`dict`): Dict type transition data, including at least ['obs','next_obs', 'logit',\ | |
| 'action','reward', 'done'] | |
| """ | |
| transition = { | |
| 'obs': obs, | |
| 'next_obs': timestep.obs, | |
| 'logit': policy_output['logit'], | |
| 'action': policy_output['action'], | |
| 'reward': timestep.reward, | |
| 'done': timestep.done, | |
| } | |
| return transition | |
| def _init_eval(self) -> None: | |
| r""" | |
| Overview: | |
| Evaluate mode init method. Called by ``self.__init__``, initialize eval_model, | |
| and use argmax_sample to choose action. | |
| """ | |
| self._eval_model = model_wrap(self._model, wrapper_name='argmax_sample') | |
| self._eval_model.reset() | |
| def _forward_eval(self, data: Dict[int, Any]) -> Dict[int, Any]: | |
| r""" | |
| Overview: | |
| Forward computation graph of eval mode(evaluate policy performance), at most cases, it is similar to \ | |
| ``self._forward_collect``. | |
| Arguments: | |
| - data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \ | |
| values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer. | |
| Returns: | |
| - output (:obj:`Dict[int, Any]`): The dict of predicting action for the interaction with env. | |
| ReturnsKeys | |
| - necessary: ``action`` | |
| - optional: ``logit`` | |
| """ | |
| data_id = list(data.keys()) | |
| data = default_collate(list(data.values())) | |
| if self._cuda: | |
| data = to_device(data, self._device) | |
| self._eval_model.eval() | |
| with torch.no_grad(): | |
| output = self._eval_model.forward(data, mode='compute_actor') | |
| if self._cuda: | |
| output = to_device(output, 'cpu') | |
| output = default_decollate(output) | |
| output = {i: d for i, d in zip(data_id, output)} | |
| return output | |
| def _monitor_vars_learn(self) -> List[str]: | |
| r""" | |
| Overview: | |
| Return this algorithm default model setting for demonstration. | |
| Returns: | |
| - model_info (:obj:`Tuple[str, List[str]]`): model name and mode import_names | |
| .. note:: | |
| The user can define and use customized network model but must obey the same interface definition indicated \ | |
| by import_names path. For IMPALA, ``ding.model.interface.IMPALA`` | |
| """ | |
| return ['actor_loss', 'bc_loss', 'policy_loss', 'critic_loss', 'entropy_loss', 'kl_div'] | |