Spaces:
Sleeping
Sleeping
| import torch | |
| import numpy as np | |
| import pytest | |
| from itertools import product | |
| from ding.model.template import DiscreteMAQAC, ContinuousMAQAC | |
| from ding.torch_utils import is_differentiable | |
| from ding.utils.default_helper import squeeze | |
| B = 32 | |
| agent_obs_shape = [216, 265] | |
| global_obs_shape = [264, 324] | |
| agent_num = 8 | |
| action_shape = 14 | |
| args = list(product(*[agent_obs_shape, global_obs_shape, [False, True]])) | |
| class TestDiscreteMAQAC: | |
| def output_check(self, model, outputs, action_shape): | |
| if isinstance(action_shape, tuple): | |
| loss = sum([t.sum() for t in outputs]) | |
| elif np.isscalar(action_shape): | |
| loss = outputs.sum() | |
| is_differentiable(loss, model) | |
| def test_maqac(self, agent_obs_shape, global_obs_shape, twin_critic): | |
| data = { | |
| 'obs': { | |
| 'agent_state': torch.randn(B, agent_num, agent_obs_shape), | |
| 'global_state': torch.randn(B, agent_num, global_obs_shape), | |
| 'action_mask': torch.randint(0, 2, size=(B, agent_num, action_shape)) | |
| } | |
| } | |
| model = DiscreteMAQAC(agent_obs_shape, global_obs_shape, action_shape, twin_critic=twin_critic) | |
| logit = model(data, mode='compute_actor')['logit'] | |
| value = model(data, mode='compute_critic')['q_value'] | |
| value_sum = sum(t.sum() for t in value) if twin_critic else value.sum() | |
| outputs = value_sum + logit.sum() | |
| self.output_check(model, outputs, action_shape) | |
| for p in model.parameters(): | |
| p.grad = None | |
| logit = model(data, mode='compute_actor')['logit'] | |
| self.output_check(model.actor, logit, action_shape) | |
| for p in model.parameters(): | |
| p.grad = None | |
| value = model(data, mode='compute_critic')['q_value'] | |
| if twin_critic: | |
| for v in value: | |
| assert v.shape == (B, agent_num, action_shape) | |
| else: | |
| assert value.shape == (B, agent_num, action_shape) | |
| self.output_check(model.critic, sum(t.sum() for t in value) if twin_critic else value.sum(), action_shape) | |
| B = 32 | |
| agent_obs_shape = [216, 265] | |
| global_obs_shape = [264, 324] | |
| agent_num = 8 | |
| action_shape = 14 | |
| action_space = ['regression', 'reparameterization'] | |
| args = list(product(*[agent_obs_shape, global_obs_shape, action_space, [False, True]])) | |
| class TestContinuousMAQAC: | |
| def output_check(self, model, outputs, action_shape): | |
| if isinstance(action_shape, tuple): | |
| loss = sum([t.sum() for t in outputs]) | |
| elif np.isscalar(action_shape): | |
| loss = outputs.sum() | |
| is_differentiable(loss, model) | |
| def test_continuousmaqac(self, agent_obs_shape, global_obs_shape, action_space, twin_critic): | |
| data = { | |
| 'obs': { | |
| 'agent_state': torch.randn(B, agent_num, agent_obs_shape), | |
| 'global_state': torch.randn(B, agent_num, global_obs_shape), | |
| 'action_mask': torch.randint(0, 2, size=(B, agent_num, action_shape)) | |
| }, | |
| 'action': torch.randn(B, agent_num, squeeze(action_shape)) | |
| } | |
| model = ContinuousMAQAC(agent_obs_shape, global_obs_shape, action_shape, action_space, twin_critic=twin_critic) | |
| for p in model.parameters(): | |
| p.grad = None | |
| if action_space == 'regression': | |
| action = model(data['obs'], mode='compute_actor')['action'] | |
| if squeeze(action_shape) == 1: | |
| assert action.shape == (B, ) | |
| else: | |
| assert action.shape == (B, agent_num, squeeze(action_shape)) | |
| assert action.eq(action.clamp(-1, 1)).all() | |
| self.output_check(model.actor, action, action_shape) | |
| #is_differentiable(action.sum(), model.actor) | |
| elif action_space == 'reparameterization': | |
| (mu, sigma) = model(data['obs'], mode='compute_actor')['logit'] | |
| assert mu.shape == (B, agent_num, action_shape) | |
| assert sigma.shape == (B, agent_num, action_shape) | |
| is_differentiable(mu.sum() + sigma.sum(), model.actor) | |
| for p in model.parameters(): | |
| p.grad = None | |
| value = model(data, mode='compute_critic')['q_value'] | |
| if twin_critic: | |
| for v in value: | |
| assert v.shape == (B, agent_num) | |
| else: | |
| assert value.shape == (B, agent_num) | |
| self.output_check(model.critic, sum(t.sum() for t in value) if twin_critic else value.sum(), action_shape) | |