Spaces:
Sleeping
Sleeping
| import torch | |
| import pytest | |
| from itertools import product | |
| from ding.model.template import ACER | |
| from ding.torch_utils import is_differentiable | |
| B = 4 | |
| obs_shape = [4, (8, ), (4, 64, 64)] | |
| act_shape = [3, (6, )] | |
| args = list(product(*[obs_shape, act_shape])) | |
| class TestACER: | |
| def test_ACER(self, obs_shape, act_shape): | |
| if isinstance(obs_shape, int): | |
| inputs = torch.randn(B, obs_shape) | |
| else: | |
| inputs = torch.randn(B, *obs_shape) | |
| model = ACER(obs_shape, act_shape) | |
| outputs_c = model(inputs, mode='compute_critic') | |
| assert isinstance(outputs_c, dict) | |
| if isinstance(act_shape, int): | |
| assert outputs_c['q_value'].shape == (B, act_shape) | |
| elif len(act_shape) == 1: | |
| assert outputs_c['q_value'].shape == (B, *act_shape) | |
| outputs_a = model(inputs, mode='compute_actor') | |
| assert isinstance(outputs_a, dict) | |
| if isinstance(act_shape, int): | |
| assert outputs_a['logit'].shape == (B, act_shape) | |
| elif len(act_shape) == 1: | |
| assert outputs_a['logit'].shape == (B, *act_shape) | |
| outputs = {**outputs_a, **outputs_c} | |
| loss = sum([v.sum() for v in outputs.values()]) | |
| is_differentiable(loss, model) | |