Spaces:
Sleeping
Sleeping
| import gym | |
| import torch | |
| from ditk import logging | |
| from ding.model import DQN | |
| from ding.policy import DQNPolicy | |
| from ding.envs import DingEnvWrapper, BaseEnvManagerV2 | |
| from ding.config import compile_config | |
| from ding.framework import task | |
| from ding.framework.context import OnlineRLContext | |
| from ding.framework.middleware import interaction_evaluator | |
| from ding.utils import set_pkg_seed | |
| from dizoo.classic_control.cartpole.config.cartpole_dqn_config import main_config, create_config | |
| def main(): | |
| logging.getLogger().setLevel(logging.INFO) | |
| main_config.exp_name = 'cartpole_dqn_eval' | |
| cfg = compile_config(main_config, create_cfg=create_config, auto=True) | |
| with task.start(async_mode=False, ctx=OnlineRLContext()): | |
| evaluator_env = BaseEnvManagerV2( | |
| env_fn=[lambda: DingEnvWrapper(gym.make("CartPole-v0")) for _ in range(cfg.env.evaluator_env_num)], | |
| cfg=cfg.env.manager | |
| ) | |
| set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda) | |
| model = DQN(**cfg.policy.model) | |
| # Load the pretrained weights. | |
| # First, you should get a pretrained network weights. | |
| # For example, you can run ``python3 -u ding/examples/dqn.py``. | |
| pretrained_state_dict = torch.load('cartpole_dqn_seed0/ckpt/final.pth.tar', map_location='cpu')['model'] | |
| model.load_state_dict(pretrained_state_dict) | |
| policy = DQNPolicy(cfg.policy, model=model) | |
| # Define the evaluator middleware. | |
| task.use(interaction_evaluator(cfg, policy.eval_mode, evaluator_env)) | |
| task.run(max_step=1) | |
| if __name__ == "__main__": | |
| main() | |