Spaces:
Running
Running
File size: 14,090 Bytes
6fda968 233b170 6fda968 bf35ece 233b170 f2b6ded 6fda968 f2b6ded 233b170 bf35ece 233b170 bf35ece f2b6ded 6fda968 f2b6ded 233b170 f2b6ded 6fda968 f2b6ded 233b170 f2b6ded 6fda968 233b170 bf35ece f2b6ded 6fda968 f2b6ded 6fda968 233b170 bf35ece 6fda968 bf35ece 6fda968 bf35ece 6fda968 bf35ece 6fda968 f2b6ded bf35ece f2b6ded 6fda968 233b170 6fda968 f2b6ded 6fda968 233b170 f2b6ded 6fda968 f2b6ded 6fda968 233b170 6fda968 233b170 f2b6ded bf35ece 6fda968 233b170 6fda968 bf35ece 6fda968 233b170 f2b6ded 6fda968 f2b6ded 6fda968 f2b6ded 6fda968 f2b6ded 6fda968 f2b6ded 6fda968 f2b6ded 6fda968 f2b6ded 6fda968 4d37e51 6fda968 4d37e51 233b170 6fda968 233b170 f2b6ded 6fda968 4d37e51 6fda968 4d37e51 6fda968 f2b6ded 4d37e51 233b170 f2b6ded 4d37e51 6fda968 4d37e51 6fda968 4d37e51 6fda968 4d37e51 6fda968 233b170 6fda968 4d37e51 6fda968 233b170 6fda968 4d37e51 233b170 4d37e51 6fda968 f2b6ded 6fda968 4d37e51 6fda968 4d37e51 6fda968 f2b6ded 6fda968 f2b6ded 4d37e51 f2b6ded 6fda968 4d37e51 6fda968 4d37e51 6fda968 4d37e51 6fda968 4d37e51 6fda968 f2b6ded 6fda968 f2b6ded 6fda968 f2b6ded 6fda968 f2b6ded 233b170 6fda968 f2b6ded 6fda968 233b170 6fda968 f2b6ded 6fda968 f2b6ded 6fda968 f2b6ded 6fda968 233b170 f2b6ded 6fda968 f2b6ded 6fda968 f2b6ded 6fda968 f2b6ded 6fda968 f2b6ded 6fda968 f2b6ded |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
import streamlit as st
import json
import os
import time
from io import BytesIO
from PIL import Image
from typing import Dict, List, Any
from pathlib import Path
# Import core logic and configurations from the project
from geo_bot import (
GeoBot,
AGENT_PROMPT_TEMPLATE,
BENCHMARK_PROMPT,
)
from benchmark import MapGuesserBenchmark
from config import MODELS_CONFIG, get_data_paths, SUCCESS_THRESHOLD_KM
from langchain_openai import ChatOpenAI
from langchain_anthropic import ChatAnthropic
from langchain_google_genai import ChatGoogleGenerativeAI
# --- Helper function ---
def get_available_datasets():
"""Get list of available datasets"""
datasets_dir = Path("datasets")
if not datasets_dir.exists():
return ["default"]
datasets = []
for dataset_dir in datasets_dir.iterdir():
if dataset_dir.is_dir():
dataset_name = dataset_dir.name
data_paths = get_data_paths(dataset_name)
if os.path.exists(data_paths["golden_labels"]):
datasets.append(dataset_name)
return datasets if datasets else ["default"]
# --- Page UI Setup ---
st.set_page_config(page_title="MapCrunch AI Agent", layout="wide")
st.title("πΊοΈ MapCrunch AI Agent")
st.caption(
"An AI agent that explores and identifies geographic locations through multi-step interaction."
)
# --- Sidebar for Configuration ---
with st.sidebar:
st.header("βοΈ Agent Configuration")
# Get API keys from HF Secrets (must be set in Space settings when deploying)
os.environ["OPENAI_API_KEY"] = st.secrets.get("OPENAI_API_KEY", "")
os.environ["ANTHROPIC_API_KEY"] = st.secrets.get("ANTHROPIC_API_KEY", "")
# os.environ['GOOGLE_API_KEY'] = st.secrets.get("GOOGLE_API_KEY", "")
# Dataset selection
available_datasets = get_available_datasets()
dataset_choice = st.selectbox("Select Dataset", available_datasets)
model_choice = st.selectbox("Select AI Model", list(MODELS_CONFIG.keys()))
steps_per_sample = st.slider(
"Max Exploration Steps per Sample", min_value=3, max_value=20, value=10
)
# Load golden labels for selected dataset
data_paths = get_data_paths(dataset_choice)
try:
with open(data_paths["golden_labels"], "r", encoding="utf-8") as f:
golden_labels = json.load(f).get("samples", [])
total_samples = len(golden_labels)
st.info(f"Dataset '{dataset_choice}' has {total_samples} samples")
num_samples_to_run = st.slider(
"Number of Samples to Test",
min_value=1,
max_value=total_samples,
value=min(3, total_samples),
)
except FileNotFoundError:
st.error(
f"Dataset '{dataset_choice}' not found at {data_paths['golden_labels']}. Please create the dataset first."
)
golden_labels = []
num_samples_to_run = 0
start_button = st.button(
"π Start Agent Benchmark", disabled=(num_samples_to_run == 0), type="primary"
)
# --- Agent Execution Logic ---
if start_button:
# Prepare the environment
test_samples = golden_labels[:num_samples_to_run]
config = MODELS_CONFIG.get(model_choice)
model_class = globals()[config["class"]]
model_instance_name = config["model_name"]
# Initialize helpers and result lists
benchmark_helper = MapGuesserBenchmark(dataset_name=dataset_choice)
all_results = []
st.info(
f"Starting Agent Benchmark... Dataset: {dataset_choice}, Model: {model_choice}, Steps: {steps_per_sample}, Samples: {num_samples_to_run}"
)
overall_progress_bar = st.progress(0, text="Overall Progress")
# Initialize the bot outside the loop to reuse the browser instance for efficiency
with st.spinner("Initializing browser and AI model..."):
# Note: Must run in headless mode on HF Spaces
bot = GeoBot(model=model_class, model_name=model_instance_name, headless=True)
# Main loop to iterate through all selected test samples
for i, sample in enumerate(test_samples):
sample_id = sample.get("id", "N/A")
st.divider()
st.header(f"βΆοΈ Running Sample {i + 1}/{num_samples_to_run} (ID: {sample_id})")
if not bot.controller.load_location_from_data(sample):
st.error(f"Failed to load location for sample {sample_id}. Skipping.")
continue
bot.controller.setup_clean_environment()
# Create the visualization layout for the current sample
col1, col2 = st.columns([2, 3])
with col1:
image_placeholder = st.empty()
with col2:
reasoning_placeholder = st.empty()
action_placeholder = st.empty()
# --- Inner agent exploration loop ---
history = []
final_guess = None
step_history_container = st.container()
for step in range(steps_per_sample):
step_num = step + 1
reasoning_placeholder.info(
f"π€ Thinking... (Step {step_num}/{steps_per_sample})"
)
action_placeholder.empty()
# Observe and label arrows
bot.controller.label_arrows_on_screen()
screenshot_bytes = bot.controller.take_street_view_screenshot()
# Current view
image_placeholder.image(
screenshot_bytes,
caption=f"π Step {step_num} - What AI Sees Now",
use_column_width=True,
)
# Update history
current_step_data = {
"image_b64": bot.pil_to_base64(Image.open(BytesIO(screenshot_bytes))),
"action": "N/A",
"screenshot_bytes": screenshot_bytes,
"step_num": step_num,
}
history.append(current_step_data)
# Think
available_actions = bot.controller.get_available_actions()
history_text = "\n".join(
[f"Step {j + 1}: {h['action']}" for j, h in enumerate(history[:-1])]
)
if not history_text:
history_text = "No history yet. This is the first step."
prompt = AGENT_PROMPT_TEMPLATE.format(
remaining_steps=steps_per_sample - step,
history_text=history_text,
available_actions=json.dumps(available_actions),
)
# Show what AI is considering
with reasoning_placeholder:
st.info("π§ **AI is analyzing the situation...**")
with st.expander("π Available Actions", expanded=False):
st.json(available_actions)
with st.expander("π Context Being Considered", expanded=False):
st.text_area(
"History Context:", history_text, height=100, disabled=True
)
message = bot._create_message_with_history(
prompt, [h["image_b64"] for h in history]
)
# Get AI response
response = bot.model.invoke(message)
decision = bot._parse_agent_response(response)
if not decision: # Fallback
decision = {
"action_details": {"action": "PAN_RIGHT"},
"reasoning": "β οΈ Response parsing failed. Using default recovery action.",
}
action = decision.get("action_details", {}).get("action")
history[-1]["action"] = action
history[-1]["reasoning"] = decision.get("reasoning", "N/A")
history[-1]["raw_response"] = (
response.content[:500] + "..."
if len(response.content) > 500
else response.content
)
# Display AI's decision process
reasoning_placeholder.success("β
**AI Decision Made!**")
with action_placeholder:
st.success(f"π― **AI Action:** `{action}`")
# Detailed reasoning display
with st.expander("π§ AI's Detailed Thinking Process", expanded=True):
col_reason, col_raw = st.columns([2, 1])
with col_reason:
st.markdown("**π€ AI's Reasoning:**")
st.info(decision.get("reasoning", "N/A"))
if action == "GUESS":
lat = decision.get("action_details", {}).get("lat")
lon = decision.get("action_details", {}).get("lon")
if lat and lon:
st.success(f"π **Final Guess:** {lat:.4f}, {lon:.4f}")
with col_raw:
st.markdown("**π€ Raw AI Response:**")
st.text_area(
"Full Response:",
history[-1]["raw_response"],
height=200,
disabled=True,
key=f"raw_response_{step_num}",
)
# Store step in history display
with step_history_container:
with st.expander(f"π Step {step_num} History", expanded=False):
hist_col1, hist_col2 = st.columns([1, 2])
with hist_col1:
st.image(
screenshot_bytes, caption=f"Step {step_num} View", width=200
)
with hist_col2:
st.write(f"**Action:** {action}")
st.write(
f"**Reasoning:** {decision.get('reasoning', 'N/A')[:150]}..."
)
# Force a GUESS on the last step
if step_num == steps_per_sample and action != "GUESS":
st.warning("β° Max steps reached. Forcing a GUESS action.")
action = "GUESS"
# Force coordinates if missing
if not decision.get("action_details", {}).get("lat"):
st.error("β AI didn't provide coordinates. Using fallback guess.")
decision["action_details"] = {
"action": "GUESS",
"lat": 0.0,
"lon": 0.0,
}
# Act
if action == "GUESS":
lat, lon = (
decision.get("action_details", {}).get("lat"),
decision.get("action_details", {}).get("lon"),
)
if lat is not None and lon is not None:
final_guess = (lat, lon)
else:
st.error(
"β GUESS action was missing coordinates. Guess failed for this sample."
)
break # End exploration for the current sample
elif action == "MOVE_FORWARD":
with st.spinner("πΆ Moving forward..."):
bot.controller.move("forward")
elif action == "MOVE_BACKWARD":
with st.spinner("π Moving backward..."):
bot.controller.move("backward")
elif action == "PAN_LEFT":
with st.spinner("β¬
οΈ Panning left..."):
bot.controller.pan_view("left")
elif action == "PAN_RIGHT":
with st.spinner("β‘οΈ Panning right..."):
bot.controller.pan_view("right")
time.sleep(1) # A brief pause between steps for better visualization
# --- End of single sample run, calculate and display results ---
true_coords = {"lat": sample.get("lat"), "lng": sample.get("lng")}
distance_km = None
is_success = False
if final_guess:
distance_km = benchmark_helper.calculate_distance(true_coords, final_guess)
if distance_km is not None:
is_success = distance_km <= SUCCESS_THRESHOLD_KM
st.subheader("π― Round Result")
res_col1, res_col2, res_col3 = st.columns(3)
res_col1.metric(
"Final Guess (Lat, Lon)", f"{final_guess[0]:.3f}, {final_guess[1]:.3f}"
)
res_col2.metric(
"Ground Truth (Lat, Lon)",
f"{true_coords['lat']:.3f}, {true_coords['lng']:.3f}",
)
res_col3.metric(
"Distance Error",
f"{distance_km:.1f} km" if distance_km is not None else "N/A",
delta=f"{'Success' if is_success else 'Failure'}",
delta_color=("inverse" if is_success else "off"),
)
else:
st.error("Agent failed to make a final guess.")
all_results.append(
{
"sample_id": sample_id,
"model": model_choice,
"true_coordinates": true_coords,
"predicted_coordinates": final_guess,
"distance_km": distance_km,
"success": is_success,
}
)
# Update overall progress bar
overall_progress_bar.progress(
(i + 1) / num_samples_to_run,
text=f"Overall Progress: {i + 1}/{num_samples_to_run}",
)
# --- End of all samples, display final summary ---
bot.close() # Close the browser
st.divider()
st.header("π Benchmark Summary")
summary = benchmark_helper.generate_summary(all_results)
if summary and model_choice in summary:
stats = summary[model_choice]
sum_col1, sum_col2 = st.columns(2)
sum_col1.metric(
"Overall Success Rate", f"{stats.get('success_rate', 0) * 100:.1f} %"
)
sum_col2.metric(
"Average Distance Error", f"{stats.get('average_distance_km', 0):.1f} km"
)
st.dataframe(all_results) # Display the detailed results table
else:
st.warning("Not enough results to generate a summary.")
|