File size: 9,763 Bytes
a489b73
dbff21d
 
19079e1
dbff21d
19079e1
6494fb6
dbff21d
a1fbea8
dbff21d
19079e1
dbff21d
 
19079e1
 
dbff21d
 
d53472f
dbff21d
19079e1
dbff21d
19079e1
 
dbff21d
 
 
 
 
 
 
 
19079e1
69ee1b6
19079e1
 
 
 
 
 
 
6494fb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19079e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e10169
 
 
 
19079e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4669fec
19079e1
 
 
 
dbff21d
6ff754c
88e00f3
d53472f
 
 
 
 
 
6494fb6
d53472f
 
 
19079e1
 
d53472f
19079e1
 
 
 
 
 
d53472f
19079e1
d53472f
dbff21d
23abd8e
 
19079e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbff21d
 
19079e1
d53472f
19079e1
 
 
 
 
dfc05aa
19079e1
 
 
 
 
 
d53472f
 
 
 
19079e1
 
d53472f
 
19079e1
 
d53472f
8caca6d
4669fec
d53472f
19079e1
dbff21d
19079e1
 
f096158
19079e1
 
 
dbff21d
19079e1
 
dbff21d
d53472f
19079e1
 
dbff21d
6e10169
 
 
dbff21d
19079e1
 
 
 
 
d86fff3
d53472f
19079e1
dbff21d
 
19079e1
dbff21d
 
 
d53472f
9a1997b
d53472f
19079e1
d53472f
dbff21d
 
 
 
 
 
 
 
 
d53472f
 
19079e1
dbff21d
 
 
 
3a20400
 
 
 
19079e1
d53472f
 
3a20400
 
dbff21d
 
 
19079e1
dbff21d
a1fbea8
dbff21d
d53472f
dbff21d
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import spaces
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import torch
import librosa
import gradio as gr
from snac import SNAC
import re

orpheus_model_id = 'NandemoGHS/Galgame-Orpheus-3B'

tokenizer = AutoTokenizer.from_pretrained(orpheus_model_id)

model = AutoModelForCausalLM.from_pretrained(
    orpheus_model_id,
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
)
model.eval().cuda()

snac_model_id = 'hubertsiuzdak/snac_24khz'
 
snac_model = SNAC.from_pretrained(snac_model_id)
snac_model.eval().cuda()

whisper_turbo_pipe = pipeline(
    "automatic-speech-recognition",
    model="openai/whisper-large-v3-turbo",
    torch_dtype=torch.float16,
    device='cuda',
)

SOT_ID = 128000 # Start of Text (Not used)
EOT_ID = 128009 # End of Text
SOS_ID = 128257 # Start of Speech
EOS_ID = 128258 # End of Speech
SOH_ID = 128259 # Start of Human
EOH_ID = 128260 # End of Human
SOA_ID = 128261 # Start of AI
EOA_ID = 128262 # End of AI

REPLACE_MAP: dict[str, str] = {
    r"\t": "",
    r"\[n\]": "",
    r" ": "",
    r" ": "",
    r"[;▼♀♂《》≪≫①②③④⑤⑥]": "",
    r"[\u02d7\u2010-\u2015\u2043\u2212\u23af\u23e4\u2500\u2501\u2e3a\u2e3b]": "",
    r"[\uff5e\u301C]": "ー",
    r"?": "?",
    r"!": "!",
    r"[●◯〇]": "○",
    r"♥": "♡",
}
FULLWIDTH_ALPHA_TO_HALFWIDTH = str.maketrans(
    {
        chr(full): chr(half)
        for full, half in zip(
            list(range(0xFF21, 0xFF3B)) + list(range(0xFF41, 0xFF5B)),
            list(range(0x41, 0x5B)) + list(range(0x61, 0x7B)),
        )
    }
)
HALFWIDTH_KATAKANA_TO_FULLWIDTH = str.maketrans(
    {
        chr(half): chr(full)
        for half, full in zip(range(0xFF61, 0xFF9F), range(0x30A1, 0x30FB))
    }
)
FULLWIDTH_DIGITS_TO_HALFWIDTH = str.maketrans(
    {
        chr(full): chr(half)
        for full, half in zip(range(0xFF10, 0xFF1A), range(0x30, 0x3A))
    }
)
INVALID_PATTERN = re.compile(
    r"[^\u3040-\u309F\u30A0-\u30FF\u4E00-\u9FFF\u3400-\u4DBF\u3005"
    r"\u0041-\u005A\u0061-\u007A"
    r"\u0030-\u0039"
    r"。、!?…♪♡○]"
)

def normalize(text: str) -> str:
    for pattern, replacement in REPLACE_MAP.items():
        text = re.sub(pattern, replacement, text)

    text = text.translate(FULLWIDTH_ALPHA_TO_HALFWIDTH)
    text = text.translate(FULLWIDTH_DIGITS_TO_HALFWIDTH)
    text = text.translate(HALFWIDTH_KATAKANA_TO_FULLWIDTH)

    text = re.sub(r"…{3,}", "……", text)

    def replace_special_chars(match):
        seq = match.group(0)
        return seq[0] if len(set(seq)) == 1 else seq[0] + seq[-1]

    return text

def tokenize_audio(waveform):    
    waveform = waveform.unsqueeze(0)
    
    with torch.inference_mode():
        codes = snac_model.encode(waveform)

    all_codes = []
    for i in range(codes[0].shape[1]):
        all_codes.append(codes[0][0][i].item()+128266)
        all_codes.append(codes[1][0][2*i].item()+128266+4096)
        all_codes.append(codes[2][0][4*i].item()+128266+(2*4096))
        all_codes.append(codes[2][0][(4*i)+1].item()+128266+(3*4096))
        all_codes.append(codes[1][0][(2*i)+1].item()+128266+(4*4096))
        all_codes.append(codes[2][0][(4*i)+2].item()+128266+(5*4096))
        all_codes.append(codes[2][0][(4*i)+3].item()+128266+(6*4096))


    return all_codes

def redistribute_codes(code_list):
    new_length = (len(code_list) // 7) * 7
    if new_length == 0:
        return None
    code_list = code_list[:new_length]
    layer_1 = []
    layer_2 = []
    layer_3 = []
    for i in range((len(code_list)+1)//7):
        layer_1.append(code_list[7*i])
        layer_2.append(code_list[7*i+1]-4096)
        layer_3.append(code_list[7*i+2]-(2*4096))
        layer_3.append(code_list[7*i+3]-(3*4096))
        layer_2.append(code_list[7*i+4]-(4*4096))
        layer_3.append(code_list[7*i+5]-(5*4096))
        layer_3.append(code_list[7*i+6]-(6*4096))
    codes = [
        torch.tensor(layer_1).unsqueeze(0),
        torch.tensor(layer_2).unsqueeze(0),
        torch.tensor(layer_3).unsqueeze(0)
    ]
    print(codes)
    codes = [c.cuda() for c in codes]
    with torch.no_grad():
        audio_hat = snac_model.decode(codes)
    return audio_hat

@spaces.GPU(duration=60)
def infer(sample_audio_path, target_text, temperature, top_p, repetition_penalty, progress=gr.Progress()):
    if not target_text or not target_text.strip():
        gr.Warning("Please input text to generate audio.")
        return None, None
    if len(target_text) > 300:
        gr.Warning("Text is too long. Please keep it under 300 characters.")
        target_text = target_text[:300]
    target_text = normalize(target_text)
    with torch.no_grad():
        if sample_audio_path:
            progress(0, 'Loading and trimming audio...')
            audio_array, sample_rate = librosa.load(sample_audio_path, sr=24000)
            if len(audio_array) / sample_rate > 15:
                gr.Warning("Trimming audio to first 15secs.")
                num_samples_to_keep = int(sample_rate * 15)
                audio_array = audio_array[:num_samples_to_keep]

            prompt_wav = torch.from_numpy(audio_array).unsqueeze(0)
            prompt_wav = prompt_wav.to(dtype=torch.float32)
            progress(0.2, 'Transcribing reference audio...')
            prompt_text = whisper_turbo_pipe(prompt_wav[0].numpy())['text'].strip()
            progress(0.4, 'Transcribed! Encoding audio...')
    
            # Encode the prompt wav
            snac_dev = next(snac_model.parameters()).device
            voice_tokens = tokenize_audio(prompt_wav.to(device=snac_dev))

            ref_text_ids = tokenizer(prompt_text, return_tensors="pt").input_ids[0].tolist()

            prompt_ids = (
                [SOH_ID]
                + ref_text_ids
                + [EOT_ID]
                + [EOH_ID]
                + [SOA_ID]
                + [SOS_ID]
                + voice_tokens
                + [EOS_ID]
                + [EOA_ID]
            )
        else:
            prompt_ids = []


        progress(0.6, "Generating audio...")

        target_text_ids = tokenizer(target_text, return_tensors="pt").input_ids[0].tolist()

        prompt_ids.extend([SOH_ID])
        prompt_ids.extend(target_text_ids)
        prompt_ids.extend([EOT_ID])
        prompt_ids.extend([EOH_ID])
        prompt_ids.extend([SOA_ID])
        prompt_ids.extend([SOS_ID])

        print(prompt_ids)

        input_ids = torch.tensor([prompt_ids], dtype=torch.int64).cuda()

        # Generate the speech autoregressively
        outputs = model.generate(
            input_ids,
            max_new_tokens=2048,
            eos_token_id=EOS_ID,
            do_sample=True,
            top_p=top_p,
            temperature=temperature,
            repetition_penalty=repetition_penalty,
        )
        generated_ids = outputs[0].tolist()
        print(generated_ids)

        progress(0.8, "Decoding generated audio...")

        try:
            last_sos_idx = len(generated_ids) - 1 - generated_ids[::-1].index(SOS_ID)
            speech_tokens = generated_ids[last_sos_idx + 1:]
        except ValueError:
            gr.Error("Audio generation failed: Could not find end of header token.")
            return None, None

        if EOS_ID in speech_tokens:
            speech_tokens = speech_tokens[:speech_tokens.index(EOS_ID)]

        if not speech_tokens:
            gr.Error("Audio generation failed: No speech tokens were generated.")
            return None, None

        base_offset = 128266
        adjusted_tokens = [token - base_offset for token in speech_tokens if token >= base_offset]
        gen_wav_tensor = redistribute_codes(adjusted_tokens)

        if gen_wav_tensor is None:
            gr.Error("Audio decoding failed.")
            return None, None

        gen_wav = gen_wav_tensor.cpu().squeeze()

        progress(1, 'Synthesized!')
        return (24000, gen_wav.numpy())

with gr.Blocks() as app_tts:
    gr.Markdown("# Galgame Orpheus 3B")
    ref_audio_input = gr.Audio(label="Reference Audio", type="filepath")
    gen_text_input = gr.Textbox(label="Text to Generate", lines=10)

    with gr.Row():
        temperature_slider = gr.Slider(minimum=0.0, maximum=1.0, value=0.8, step=0.05, label="Temperature")
        top_p_slider = gr.Slider(minimum=0.0, maximum=1.0, value=1.0, step=0.05, label="Top-p")
        repetition_penalty_slider = gr.Slider(minimum=1.0, maximum=1.5, value=1.1, step=0.05, label="Repetition Penalty")

    generate_btn = gr.Button("Synthesize", variant="primary")

    audio_output = gr.Audio(label="Synthesized Audio")

    generate_btn.click(
        infer,
        inputs=[
            ref_audio_input,
            gen_text_input,
            temperature_slider,
            top_p_slider,
            repetition_penalty_slider,
        ],
        outputs=[audio_output],
    )

with gr.Blocks() as app_credits:
    gr.Markdown("""
# Credits

* [canopyai](https://github.com/canopyai) for the original [repo](https://github.com/canopyai/Orpheus-TTS)
* [mrfakename](https://huggingface.co/mrfakename) for the [gradio demo code](https://huggingface.co/spaces/mrfakename/E2-F5-TTS)
* [SunderAli17](https://huggingface.co/SunderAli17) for the [gradio demo code](https://huggingface.co/spaces/SunderAli17/llasa-3b-tts)
""")

with gr.Blocks() as app:
    gr.Markdown(
        """
# Galgame Orpheus 3B

This is a local web UI for Galgame Orpheus 3B TTS model. You can check out the model [here](https://huggingface.co/NandemoGHS/Galgame-Orpheus-3B).

The model is fine-tuned by Japanese audio data.

If you're having issues, try converting your reference audio to WAV or MP3, clipping it to 15s, and shortening your prompt.
"""
    )
    gr.TabbedInterface([app_tts], ["TTS"])


app.launch()