Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,763 Bytes
a489b73 dbff21d 19079e1 dbff21d 19079e1 6494fb6 dbff21d a1fbea8 dbff21d 19079e1 dbff21d 19079e1 dbff21d d53472f dbff21d 19079e1 dbff21d 19079e1 dbff21d 19079e1 69ee1b6 19079e1 6494fb6 19079e1 6e10169 19079e1 4669fec 19079e1 dbff21d 6ff754c 88e00f3 d53472f 6494fb6 d53472f 19079e1 d53472f 19079e1 d53472f 19079e1 d53472f dbff21d 23abd8e 19079e1 dbff21d 19079e1 d53472f 19079e1 dfc05aa 19079e1 d53472f 19079e1 d53472f 19079e1 d53472f 8caca6d 4669fec d53472f 19079e1 dbff21d 19079e1 f096158 19079e1 dbff21d 19079e1 dbff21d d53472f 19079e1 dbff21d 6e10169 dbff21d 19079e1 d86fff3 d53472f 19079e1 dbff21d 19079e1 dbff21d d53472f 9a1997b d53472f 19079e1 d53472f dbff21d d53472f 19079e1 dbff21d 3a20400 19079e1 d53472f 3a20400 dbff21d 19079e1 dbff21d a1fbea8 dbff21d d53472f dbff21d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
import spaces
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import torch
import librosa
import gradio as gr
from snac import SNAC
import re
orpheus_model_id = 'NandemoGHS/Galgame-Orpheus-3B'
tokenizer = AutoTokenizer.from_pretrained(orpheus_model_id)
model = AutoModelForCausalLM.from_pretrained(
orpheus_model_id,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
)
model.eval().cuda()
snac_model_id = 'hubertsiuzdak/snac_24khz'
snac_model = SNAC.from_pretrained(snac_model_id)
snac_model.eval().cuda()
whisper_turbo_pipe = pipeline(
"automatic-speech-recognition",
model="openai/whisper-large-v3-turbo",
torch_dtype=torch.float16,
device='cuda',
)
SOT_ID = 128000 # Start of Text (Not used)
EOT_ID = 128009 # End of Text
SOS_ID = 128257 # Start of Speech
EOS_ID = 128258 # End of Speech
SOH_ID = 128259 # Start of Human
EOH_ID = 128260 # End of Human
SOA_ID = 128261 # Start of AI
EOA_ID = 128262 # End of AI
REPLACE_MAP: dict[str, str] = {
r"\t": "",
r"\[n\]": "",
r" ": "",
r" ": "",
r"[;▼♀♂《》≪≫①②③④⑤⑥]": "",
r"[\u02d7\u2010-\u2015\u2043\u2212\u23af\u23e4\u2500\u2501\u2e3a\u2e3b]": "",
r"[\uff5e\u301C]": "ー",
r"?": "?",
r"!": "!",
r"[●◯〇]": "○",
r"♥": "♡",
}
FULLWIDTH_ALPHA_TO_HALFWIDTH = str.maketrans(
{
chr(full): chr(half)
for full, half in zip(
list(range(0xFF21, 0xFF3B)) + list(range(0xFF41, 0xFF5B)),
list(range(0x41, 0x5B)) + list(range(0x61, 0x7B)),
)
}
)
HALFWIDTH_KATAKANA_TO_FULLWIDTH = str.maketrans(
{
chr(half): chr(full)
for half, full in zip(range(0xFF61, 0xFF9F), range(0x30A1, 0x30FB))
}
)
FULLWIDTH_DIGITS_TO_HALFWIDTH = str.maketrans(
{
chr(full): chr(half)
for full, half in zip(range(0xFF10, 0xFF1A), range(0x30, 0x3A))
}
)
INVALID_PATTERN = re.compile(
r"[^\u3040-\u309F\u30A0-\u30FF\u4E00-\u9FFF\u3400-\u4DBF\u3005"
r"\u0041-\u005A\u0061-\u007A"
r"\u0030-\u0039"
r"。、!?…♪♡○]"
)
def normalize(text: str) -> str:
for pattern, replacement in REPLACE_MAP.items():
text = re.sub(pattern, replacement, text)
text = text.translate(FULLWIDTH_ALPHA_TO_HALFWIDTH)
text = text.translate(FULLWIDTH_DIGITS_TO_HALFWIDTH)
text = text.translate(HALFWIDTH_KATAKANA_TO_FULLWIDTH)
text = re.sub(r"…{3,}", "……", text)
def replace_special_chars(match):
seq = match.group(0)
return seq[0] if len(set(seq)) == 1 else seq[0] + seq[-1]
return text
def tokenize_audio(waveform):
waveform = waveform.unsqueeze(0)
with torch.inference_mode():
codes = snac_model.encode(waveform)
all_codes = []
for i in range(codes[0].shape[1]):
all_codes.append(codes[0][0][i].item()+128266)
all_codes.append(codes[1][0][2*i].item()+128266+4096)
all_codes.append(codes[2][0][4*i].item()+128266+(2*4096))
all_codes.append(codes[2][0][(4*i)+1].item()+128266+(3*4096))
all_codes.append(codes[1][0][(2*i)+1].item()+128266+(4*4096))
all_codes.append(codes[2][0][(4*i)+2].item()+128266+(5*4096))
all_codes.append(codes[2][0][(4*i)+3].item()+128266+(6*4096))
return all_codes
def redistribute_codes(code_list):
new_length = (len(code_list) // 7) * 7
if new_length == 0:
return None
code_list = code_list[:new_length]
layer_1 = []
layer_2 = []
layer_3 = []
for i in range((len(code_list)+1)//7):
layer_1.append(code_list[7*i])
layer_2.append(code_list[7*i+1]-4096)
layer_3.append(code_list[7*i+2]-(2*4096))
layer_3.append(code_list[7*i+3]-(3*4096))
layer_2.append(code_list[7*i+4]-(4*4096))
layer_3.append(code_list[7*i+5]-(5*4096))
layer_3.append(code_list[7*i+6]-(6*4096))
codes = [
torch.tensor(layer_1).unsqueeze(0),
torch.tensor(layer_2).unsqueeze(0),
torch.tensor(layer_3).unsqueeze(0)
]
print(codes)
codes = [c.cuda() for c in codes]
with torch.no_grad():
audio_hat = snac_model.decode(codes)
return audio_hat
@spaces.GPU(duration=60)
def infer(sample_audio_path, target_text, temperature, top_p, repetition_penalty, progress=gr.Progress()):
if not target_text or not target_text.strip():
gr.Warning("Please input text to generate audio.")
return None, None
if len(target_text) > 300:
gr.Warning("Text is too long. Please keep it under 300 characters.")
target_text = target_text[:300]
target_text = normalize(target_text)
with torch.no_grad():
if sample_audio_path:
progress(0, 'Loading and trimming audio...')
audio_array, sample_rate = librosa.load(sample_audio_path, sr=24000)
if len(audio_array) / sample_rate > 15:
gr.Warning("Trimming audio to first 15secs.")
num_samples_to_keep = int(sample_rate * 15)
audio_array = audio_array[:num_samples_to_keep]
prompt_wav = torch.from_numpy(audio_array).unsqueeze(0)
prompt_wav = prompt_wav.to(dtype=torch.float32)
progress(0.2, 'Transcribing reference audio...')
prompt_text = whisper_turbo_pipe(prompt_wav[0].numpy())['text'].strip()
progress(0.4, 'Transcribed! Encoding audio...')
# Encode the prompt wav
snac_dev = next(snac_model.parameters()).device
voice_tokens = tokenize_audio(prompt_wav.to(device=snac_dev))
ref_text_ids = tokenizer(prompt_text, return_tensors="pt").input_ids[0].tolist()
prompt_ids = (
[SOH_ID]
+ ref_text_ids
+ [EOT_ID]
+ [EOH_ID]
+ [SOA_ID]
+ [SOS_ID]
+ voice_tokens
+ [EOS_ID]
+ [EOA_ID]
)
else:
prompt_ids = []
progress(0.6, "Generating audio...")
target_text_ids = tokenizer(target_text, return_tensors="pt").input_ids[0].tolist()
prompt_ids.extend([SOH_ID])
prompt_ids.extend(target_text_ids)
prompt_ids.extend([EOT_ID])
prompt_ids.extend([EOH_ID])
prompt_ids.extend([SOA_ID])
prompt_ids.extend([SOS_ID])
print(prompt_ids)
input_ids = torch.tensor([prompt_ids], dtype=torch.int64).cuda()
# Generate the speech autoregressively
outputs = model.generate(
input_ids,
max_new_tokens=2048,
eos_token_id=EOS_ID,
do_sample=True,
top_p=top_p,
temperature=temperature,
repetition_penalty=repetition_penalty,
)
generated_ids = outputs[0].tolist()
print(generated_ids)
progress(0.8, "Decoding generated audio...")
try:
last_sos_idx = len(generated_ids) - 1 - generated_ids[::-1].index(SOS_ID)
speech_tokens = generated_ids[last_sos_idx + 1:]
except ValueError:
gr.Error("Audio generation failed: Could not find end of header token.")
return None, None
if EOS_ID in speech_tokens:
speech_tokens = speech_tokens[:speech_tokens.index(EOS_ID)]
if not speech_tokens:
gr.Error("Audio generation failed: No speech tokens were generated.")
return None, None
base_offset = 128266
adjusted_tokens = [token - base_offset for token in speech_tokens if token >= base_offset]
gen_wav_tensor = redistribute_codes(adjusted_tokens)
if gen_wav_tensor is None:
gr.Error("Audio decoding failed.")
return None, None
gen_wav = gen_wav_tensor.cpu().squeeze()
progress(1, 'Synthesized!')
return (24000, gen_wav.numpy())
with gr.Blocks() as app_tts:
gr.Markdown("# Galgame Orpheus 3B")
ref_audio_input = gr.Audio(label="Reference Audio", type="filepath")
gen_text_input = gr.Textbox(label="Text to Generate", lines=10)
with gr.Row():
temperature_slider = gr.Slider(minimum=0.0, maximum=1.0, value=0.8, step=0.05, label="Temperature")
top_p_slider = gr.Slider(minimum=0.0, maximum=1.0, value=1.0, step=0.05, label="Top-p")
repetition_penalty_slider = gr.Slider(minimum=1.0, maximum=1.5, value=1.1, step=0.05, label="Repetition Penalty")
generate_btn = gr.Button("Synthesize", variant="primary")
audio_output = gr.Audio(label="Synthesized Audio")
generate_btn.click(
infer,
inputs=[
ref_audio_input,
gen_text_input,
temperature_slider,
top_p_slider,
repetition_penalty_slider,
],
outputs=[audio_output],
)
with gr.Blocks() as app_credits:
gr.Markdown("""
# Credits
* [canopyai](https://github.com/canopyai) for the original [repo](https://github.com/canopyai/Orpheus-TTS)
* [mrfakename](https://huggingface.co/mrfakename) for the [gradio demo code](https://huggingface.co/spaces/mrfakename/E2-F5-TTS)
* [SunderAli17](https://huggingface.co/SunderAli17) for the [gradio demo code](https://huggingface.co/spaces/SunderAli17/llasa-3b-tts)
""")
with gr.Blocks() as app:
gr.Markdown(
"""
# Galgame Orpheus 3B
This is a local web UI for Galgame Orpheus 3B TTS model. You can check out the model [here](https://huggingface.co/NandemoGHS/Galgame-Orpheus-3B).
The model is fine-tuned by Japanese audio data.
If you're having issues, try converting your reference audio to WAV or MP3, clipping it to 15s, and shortening your prompt.
"""
)
gr.TabbedInterface([app_tts], ["TTS"])
app.launch() |