Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,915 Bytes
a489b73 dbff21d d659216 dbff21d 31c14da dbff21d d53472f dbff21d d53472f dbff21d d53472f dbff21d d53472f dbff21d d53472f dbff21d d659216 060e6f0 d659216 dbff21d 6ff754c 6658bb2 d53472f d659216 d53472f dbff21d d53472f dbff21d d53472f 6658bb2 d53472f dbff21d d53472f dbff21d d53472f dbff21d d53472f dbff21d d53472f dbff21d d53472f dbff21d d53472f dbff21d d53472f d86fff3 d53472f d86fff3 dbff21d 31c14da dbff21d d53472f 9a1997b d53472f 6658bb2 d53472f dbff21d d53472f 6658bb2 dbff21d 3a20400 d53472f 3a20400 dbff21d 31c14da dbff21d 31c14da dbff21d d53472f dbff21d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
import spaces
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import torch
import soundfile as sf
from xcodec2.modeling_xcodec2 import XCodec2Model
import torchaudio
import gradio as gr
import re
llasa_model_id = 'OmniAICreator/Galgame-Llasa-8B'
tokenizer = AutoTokenizer.from_pretrained(llasa_model_id)
model = AutoModelForCausalLM.from_pretrained(
llasa_model_id,
trust_remote_code=True,
)
model.eval().cuda()
xcodec2_model_id = "HKUSTAudio/xcodec2"
codec_model = XCodec2Model.from_pretrained(xcodec2_model_id)
codec_model.eval().cuda()
whisper_turbo_pipe = pipeline(
"automatic-speech-recognition",
model="openai/whisper-large-v3-turbo",
torch_dtype=torch.float16,
device='cuda',
)
REPLACE_MAP: dict[str, str] = {
r"\t": "",
r"\[n\]": "",
r" ": "",
r" ": "",
r"[;▼♀♂《》≪≫①②③④⑤⑥]": "",
r"[\u02d7\u2010-\u2015\u2043\u2212\u23af\u23e4\u2500\u2501\u2e3a\u2e3b]": "",
r"[\uff5e\u301C]": "ー",
r"?": "?",
r"!": "!",
r"[●◯〇]": "○",
r"♥": "♡",
}
FULLWIDTH_ALPHA_TO_HALFWIDTH = str.maketrans(
{
chr(full): chr(half)
for full, half in zip(
list(range(0xFF21, 0xFF3B)) + list(range(0xFF41, 0xFF5B)),
list(range(0x41, 0x5B)) + list(range(0x61, 0x7B)),
)
}
)
HALFWIDTH_KATAKANA_TO_FULLWIDTH = str.maketrans(
{
chr(half): chr(full)
for half, full in zip(range(0xFF61, 0xFF9F), range(0x30A1, 0x30FB))
}
)
FULLWIDTH_DIGITS_TO_HALFWIDTH = str.maketrans(
{
chr(full): chr(half)
for full, half in zip(range(0xFF10, 0xFF1A), range(0x30, 0x3A))
}
)
INVALID_PATTERN = re.compile(
r"[^\u3040-\u309F\u30A0-\u30FF\u4E00-\u9FFF\u3400-\u4DBF\u3005"
r"\u0041-\u005A\u0061-\u007A"
r"\u0030-\u0039"
r"。、!?…♪♡○]"
)
def normalize(text: str) -> str:
for pattern, replacement in REPLACE_MAP.items():
text = re.sub(pattern, replacement, text)
text = text.translate(FULLWIDTH_ALPHA_TO_HALFWIDTH)
text = text.translate(FULLWIDTH_DIGITS_TO_HALFWIDTH)
text = text.translate(HALFWIDTH_KATAKANA_TO_FULLWIDTH)
text = re.sub(r"…{3,}", "……", text)
def replace_special_chars(match):
seq = match.group(0)
return seq[0] if len(set(seq)) == 1 else seq[0] + seq[-1]
return text
def ids_to_speech_tokens(speech_ids):
speech_tokens_str = []
for speech_id in speech_ids:
speech_tokens_str.append(f"<|s_{speech_id}|>")
return speech_tokens_str
def extract_speech_ids(speech_tokens_str):
speech_ids = []
for token_str in speech_tokens_str:
if token_str.startswith('<|s_') and token_str.endswith('|>'):
num_str = token_str[4:-2]
num = int(num_str)
speech_ids.append(num)
else:
print(f"Unexpected token: {token_str}")
return speech_ids
@spaces.GPU(duration=60)
def infer(sample_audio_path, target_text, temperature, top_p, repetition_penalty, progress=gr.Progress()):
if not target_text or not target_text.strip():
gr.Warning("Please input text to generate audio.")
return None, None
if len(target_text) > 300:
gr.Warning("Text is too long. Please keep it under 300 characters.")
target_text = target_text[:300]
target_text = normalize(target_text)
with torch.no_grad():
if sample_audio_path:
progress(0, 'Loading and trimming audio...')
waveform, sample_rate = torchaudio.load(sample_audio_path)
if len(waveform[0])/sample_rate > 15:
gr.Warning("Trimming audio to first 15secs.")
waveform = waveform[:, :sample_rate*15]
# Check if the audio is stereo (i.e., has more than one channel)
if waveform.size(0) > 1:
# Convert stereo to mono by averaging the channels
waveform_mono = torch.mean(waveform, dim=0, keepdim=True)
else:
# If already mono, just use the original waveform
waveform_mono = waveform
prompt_wav = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(waveform_mono)
prompt_wav_len = prompt_wav.shape[1]
prompt_text = whisper_turbo_pipe(prompt_wav[0].numpy())['text'].strip()
progress(0.5, 'Transcribed! Encoding audio...')
# Encode the prompt wav
vq_code_prompt = codec_model.encode_code(input_waveform=prompt_wav)[0, 0, :]
# Convert int 12345 to token <|s_12345|>
speech_ids_prefix = ids_to_speech_tokens(vq_code_prompt)
input_text = prompt_text + ' ' + target_text
assistant_content = "<|SPEECH_GENERATION_START|>" + ''.join(speech_ids_prefix)
else:
progress(0, "Preparing...")
input_text = target_text
assistant_content = "<|SPEECH_GENERATION_START|>"
speech_ids_prefix = []
prompt_wav_len = 0
progress(0.75, "Generating audio...")
formatted_text = f"<|TEXT_UNDERSTANDING_START|>{input_text}<|TEXT_UNDERSTANDING_END|>"
# Tokenize the text and the speech prefix
chat = [
{"role": "user", "content": "Convert the text to speech:" + formatted_text},
{"role": "assistant", "content": assistant_content}
]
input_ids = tokenizer.apply_chat_template(
chat,
tokenize=True,
return_tensors='pt',
continue_final_message=True
).to('cuda')
speech_end_id = tokenizer.convert_tokens_to_ids('<|SPEECH_GENERATION_END|>')
# Generate the speech autoregressively
outputs = model.generate(
input_ids,
max_length=2048, # We trained our model with a max length of 2048
eos_token_id=speech_end_id,
do_sample=True,
top_p=top_p,
temperature=temperature,
repetition_penalty=repetition_penalty,
)
# Extract the speech tokens
if sample_audio_path:
generated_ids = outputs[0][input_ids.shape[1]-len(speech_ids_prefix):-1]
else:
generated_ids = outputs[0][input_ids.shape[1]:-1]
speech_tokens = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
# Convert token <|s_23456|> to int 23456
speech_tokens = extract_speech_ids(speech_tokens)
if not speech_tokens:
gr.Error("Audio generation failed.")
return None
speech_tokens = torch.tensor(speech_tokens).cuda().unsqueeze(0).unsqueeze(0)
# Decode the speech tokens to speech waveform
gen_wav = codec_model.decode_code(speech_tokens)
# if only need the generated part
if sample_audio_path and prompt_wav_len > 0:
gen_wav = gen_wav[:, :, prompt_wav_len:]
progress(1, 'Synthesized!')
return (16000, gen_wav[0, 0, :].cpu().numpy())
with gr.Blocks() as app_tts:
gr.Markdown("# Galgame Llasa 8B")
ref_audio_input = gr.Audio(label="Reference Audio", type="filepath")
gen_text_input = gr.Textbox(label="Text to Generate", lines=10)
with gr.Row():
temperature_slider = gr.Slider(minimum=0.0, maximum=1.0, value=0.8, step=0.05, label="Temperature")
top_p_slider = gr.Slider(minimum=0.0, maximum=1.0, value=1.0, step=0.05, label="Top-p")
repetition_penalty_slider = gr.Slider(minimum=1.0, maximum=1.5, value=1.1, step=0.05, label="Repetition Penalty")
generate_btn = gr.Button("Synthesize", variant="primary")
audio_output = gr.Audio(label="Synthesized Audio")
generate_btn.click(
infer,
inputs=[
ref_audio_input,
gen_text_input,
temperature_slider,
top_p_slider,
repetition_penalty_slider,
],
outputs=[audio_output],
)
with gr.Blocks() as app_credits:
gr.Markdown("""
# Credits
* [zhenye234](https://github.com/zhenye234) for the original [repo](https://github.com/zhenye234/LLaSA_training)
* [mrfakename](https://huggingface.co/mrfakename) for the [gradio demo code](https://huggingface.co/spaces/mrfakename/E2-F5-TTS)
* [SunderAli17](https://huggingface.co/SunderAli17) for the [gradio demo code](https://huggingface.co/spaces/SunderAli17/llasa-3b-tts)
""")
with gr.Blocks() as app:
gr.Markdown(
"""
# Galgame Llasa 8B
This is a local web UI for Galgame Llasa 8B TTS model. You can check out the model [here](https://huggingface.co/OmniAICreator/Galgame-Llasa-8B).
The model is fine-tuned by Japanese audio data.
If you're having issues, try converting your reference audio to WAV or MP3, clipping it to 15s, and shortening your prompt.
"""
)
gr.TabbedInterface([app_tts], ["TTS"])
app.launch() |