File size: 8,915 Bytes
a489b73
dbff21d
 
 
 
 
 
d659216
dbff21d
31c14da
dbff21d
d53472f
dbff21d
 
d53472f
dbff21d
 
d53472f
dbff21d
d53472f
dbff21d
d53472f
 
dbff21d
 
 
 
 
 
 
 
d659216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
060e6f0
d659216
 
 
 
 
 
 
dbff21d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ff754c
6658bb2
d53472f
 
 
 
 
 
d659216
d53472f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbff21d
d53472f
dbff21d
 
 
 
d53472f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6658bb2
 
d53472f
 
 
 
dbff21d
d53472f
 
dbff21d
d53472f
dbff21d
d53472f
 
dbff21d
d53472f
 
 
dbff21d
d53472f
dbff21d
d53472f
 
dbff21d
d53472f
 
 
d86fff3
d53472f
 
d86fff3
dbff21d
 
31c14da
dbff21d
 
 
d53472f
9a1997b
d53472f
6658bb2
d53472f
dbff21d
 
 
 
 
 
 
 
 
d53472f
 
6658bb2
dbff21d
 
 
 
3a20400
 
 
 
 
d53472f
 
3a20400
 
dbff21d
 
 
31c14da
dbff21d
31c14da
dbff21d
d53472f
dbff21d
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import spaces
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import torch
import soundfile as sf
from xcodec2.modeling_xcodec2 import XCodec2Model
import torchaudio
import gradio as gr
import re

llasa_model_id = 'OmniAICreator/Galgame-Llasa-8B'

tokenizer = AutoTokenizer.from_pretrained(llasa_model_id)

model = AutoModelForCausalLM.from_pretrained(
    llasa_model_id,
    trust_remote_code=True,
)
model.eval().cuda()

xcodec2_model_id = "HKUSTAudio/xcodec2"
 
codec_model = XCodec2Model.from_pretrained(xcodec2_model_id)
codec_model.eval().cuda()

whisper_turbo_pipe = pipeline(
    "automatic-speech-recognition",
    model="openai/whisper-large-v3-turbo",
    torch_dtype=torch.float16,
    device='cuda',
)

REPLACE_MAP: dict[str, str] = {
    r"\t": "",
    r"\[n\]": "",
    r" ": "",
    r" ": "",
    r"[;▼♀♂《》≪≫①②③④⑤⑥]": "",
    r"[\u02d7\u2010-\u2015\u2043\u2212\u23af\u23e4\u2500\u2501\u2e3a\u2e3b]": "",
    r"[\uff5e\u301C]": "ー",
    r"?": "?",
    r"!": "!",
    r"[●◯〇]": "○",
    r"♥": "♡",
}
FULLWIDTH_ALPHA_TO_HALFWIDTH = str.maketrans(
    {
        chr(full): chr(half)
        for full, half in zip(
            list(range(0xFF21, 0xFF3B)) + list(range(0xFF41, 0xFF5B)),
            list(range(0x41, 0x5B)) + list(range(0x61, 0x7B)),
        )
    }
)
HALFWIDTH_KATAKANA_TO_FULLWIDTH = str.maketrans(
    {
        chr(half): chr(full)
        for half, full in zip(range(0xFF61, 0xFF9F), range(0x30A1, 0x30FB))
    }
)
FULLWIDTH_DIGITS_TO_HALFWIDTH = str.maketrans(
    {
        chr(full): chr(half)
        for full, half in zip(range(0xFF10, 0xFF1A), range(0x30, 0x3A))
    }
)
INVALID_PATTERN = re.compile(
    r"[^\u3040-\u309F\u30A0-\u30FF\u4E00-\u9FFF\u3400-\u4DBF\u3005"
    r"\u0041-\u005A\u0061-\u007A"
    r"\u0030-\u0039"
    r"。、!?…♪♡○]"
)

def normalize(text: str) -> str:
    for pattern, replacement in REPLACE_MAP.items():
        text = re.sub(pattern, replacement, text)

    text = text.translate(FULLWIDTH_ALPHA_TO_HALFWIDTH)
    text = text.translate(FULLWIDTH_DIGITS_TO_HALFWIDTH)
    text = text.translate(HALFWIDTH_KATAKANA_TO_FULLWIDTH)

    text = re.sub(r"…{3,}", "……", text)

    def replace_special_chars(match):
        seq = match.group(0)
        return seq[0] if len(set(seq)) == 1 else seq[0] + seq[-1]

    return text

def ids_to_speech_tokens(speech_ids):
 
    speech_tokens_str = []
    for speech_id in speech_ids:
        speech_tokens_str.append(f"<|s_{speech_id}|>")
    return speech_tokens_str

def extract_speech_ids(speech_tokens_str):
 
    speech_ids = []
    for token_str in speech_tokens_str:
        if token_str.startswith('<|s_') and token_str.endswith('|>'):
            num_str = token_str[4:-2]

            num = int(num_str)
            speech_ids.append(num)
        else:
            print(f"Unexpected token: {token_str}")
    return speech_ids

@spaces.GPU(duration=60)
def infer(sample_audio_path, target_text, temperature, top_p, repetition_penalty, progress=gr.Progress()):
    if not target_text or not target_text.strip():
        gr.Warning("Please input text to generate audio.")
        return None, None
    if len(target_text) > 300:
        gr.Warning("Text is too long. Please keep it under 300 characters.")
        target_text = target_text[:300]
    target_text = normalize(target_text)
    with torch.no_grad():
        if sample_audio_path:
            progress(0, 'Loading and trimming audio...')
            waveform, sample_rate = torchaudio.load(sample_audio_path)
            if len(waveform[0])/sample_rate > 15:
                gr.Warning("Trimming audio to first 15secs.")
                waveform = waveform[:, :sample_rate*15]
    
            # Check if the audio is stereo (i.e., has more than one channel)
            if waveform.size(0) > 1:
                # Convert stereo to mono by averaging the channels
                waveform_mono = torch.mean(waveform, dim=0, keepdim=True)
            else:
                # If already mono, just use the original waveform
                waveform_mono = waveform
    
            prompt_wav = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(waveform_mono)
            prompt_wav_len = prompt_wav.shape[1]
            prompt_text = whisper_turbo_pipe(prompt_wav[0].numpy())['text'].strip()
            progress(0.5, 'Transcribed! Encoding audio...')
    
            # Encode the prompt wav
            vq_code_prompt = codec_model.encode_code(input_waveform=prompt_wav)[0, 0, :]

            # Convert int 12345 to token <|s_12345|>
            speech_ids_prefix = ids_to_speech_tokens(vq_code_prompt)

            input_text = prompt_text + ' ' + target_text

            assistant_content = "<|SPEECH_GENERATION_START|>" + ''.join(speech_ids_prefix)
        else:
            progress(0, "Preparing...")
            input_text = target_text
            assistant_content = "<|SPEECH_GENERATION_START|>"
            speech_ids_prefix = []
            prompt_wav_len = 0

        progress(0.75, "Generating audio...")

        formatted_text = f"<|TEXT_UNDERSTANDING_START|>{input_text}<|TEXT_UNDERSTANDING_END|>"

        # Tokenize the text and the speech prefix
        chat = [
            {"role": "user", "content": "Convert the text to speech:" + formatted_text},
            {"role": "assistant", "content": assistant_content}
        ]

        input_ids = tokenizer.apply_chat_template(
            chat, 
            tokenize=True, 
            return_tensors='pt', 
            continue_final_message=True
        ).to('cuda')
            
        speech_end_id = tokenizer.convert_tokens_to_ids('<|SPEECH_GENERATION_END|>')

        # Generate the speech autoregressively
        outputs = model.generate(
            input_ids,
            max_length=2048,  # We trained our model with a max length of 2048
            eos_token_id=speech_end_id,
            do_sample=True,
            top_p=top_p,
            temperature=temperature,
            repetition_penalty=repetition_penalty,
        )

        # Extract the speech tokens
        if sample_audio_path:
            generated_ids = outputs[0][input_ids.shape[1]-len(speech_ids_prefix):-1]
        else:
            generated_ids = outputs[0][input_ids.shape[1]:-1]

        speech_tokens = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)   

        # Convert  token <|s_23456|> to int 23456 
        speech_tokens = extract_speech_ids(speech_tokens)

        if not speech_tokens:
            gr.Error("Audio generation failed.")
            return None

        speech_tokens = torch.tensor(speech_tokens).cuda().unsqueeze(0).unsqueeze(0)

        # Decode the speech tokens to speech waveform
        gen_wav = codec_model.decode_code(speech_tokens) 

        # if only need the generated part
        if sample_audio_path and prompt_wav_len > 0:
            gen_wav = gen_wav[:, :, prompt_wav_len:]

        progress(1, 'Synthesized!')
    
        return (16000, gen_wav[0, 0, :].cpu().numpy())

with gr.Blocks() as app_tts:
    gr.Markdown("# Galgame Llasa 8B")
    ref_audio_input = gr.Audio(label="Reference Audio", type="filepath")
    gen_text_input = gr.Textbox(label="Text to Generate", lines=10)

    with gr.Row():
        temperature_slider = gr.Slider(minimum=0.0, maximum=1.0, value=0.8, step=0.05, label="Temperature")
        top_p_slider = gr.Slider(minimum=0.0, maximum=1.0, value=1.0, step=0.05, label="Top-p")
        repetition_penalty_slider = gr.Slider(minimum=1.0, maximum=1.5, value=1.1, step=0.05, label="Repetition Penalty")

    generate_btn = gr.Button("Synthesize", variant="primary")

    audio_output = gr.Audio(label="Synthesized Audio")

    generate_btn.click(
        infer,
        inputs=[
            ref_audio_input,
            gen_text_input,
            temperature_slider,
            top_p_slider,
            repetition_penalty_slider,
        ],
        outputs=[audio_output],
    )

with gr.Blocks() as app_credits:
    gr.Markdown("""
# Credits

* [zhenye234](https://github.com/zhenye234) for the original [repo](https://github.com/zhenye234/LLaSA_training)
* [mrfakename](https://huggingface.co/mrfakename) for the [gradio demo code](https://huggingface.co/spaces/mrfakename/E2-F5-TTS)
* [SunderAli17](https://huggingface.co/SunderAli17) for the [gradio demo code](https://huggingface.co/spaces/SunderAli17/llasa-3b-tts)
""")

with gr.Blocks() as app:
    gr.Markdown(
        """
# Galgame Llasa 8B

This is a local web UI for Galgame Llasa 8B TTS model. You can check out the model [here](https://huggingface.co/OmniAICreator/Galgame-Llasa-8B).

The model is fine-tuned by Japanese audio data.

If you're having issues, try converting your reference audio to WAV or MP3, clipping it to 15s, and shortening your prompt.
"""
    )
    gr.TabbedInterface([app_tts], ["TTS"])


app.launch()