update submit
Browse files- src/submission/submit.py +178 -35
src/submission/submit.py
CHANGED
|
@@ -2,8 +2,15 @@ import json
|
|
| 2 |
import os
|
| 3 |
from datetime import datetime, timezone
|
| 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
from src.display.formatting import styled_error, styled_message, styled_warning
|
| 6 |
-
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
|
| 7 |
from src.submission.check_validity import (
|
| 8 |
already_submitted_models,
|
| 9 |
check_model_card,
|
|
@@ -14,6 +21,130 @@ from src.submission.check_validity import (
|
|
| 14 |
REQUESTED_MODELS = None
|
| 15 |
USERS_TO_SUBMISSION_DATES = None
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
def add_new_eval(
|
| 18 |
model: str,
|
| 19 |
base_model: str,
|
|
@@ -21,6 +152,7 @@ def add_new_eval(
|
|
| 21 |
precision: str,
|
| 22 |
weight_type: str,
|
| 23 |
model_type: str,
|
|
|
|
| 24 |
):
|
| 25 |
global REQUESTED_MODELS
|
| 26 |
global USERS_TO_SUBMISSION_DATES
|
|
@@ -72,48 +204,59 @@ def add_new_eval(
|
|
| 72 |
if not modelcard_OK:
|
| 73 |
return styled_error(error_msg)
|
| 74 |
|
| 75 |
-
# Seems good, creating the eval
|
| 76 |
-
print("Adding new eval")
|
| 77 |
-
|
| 78 |
-
eval_entry = {
|
| 79 |
-
"model": model,
|
| 80 |
-
"base_model": base_model,
|
| 81 |
-
"revision": revision,
|
| 82 |
-
"precision": precision,
|
| 83 |
-
"weight_type": weight_type,
|
| 84 |
-
"status": "PENDING",
|
| 85 |
-
"submitted_time": current_time,
|
| 86 |
-
"model_type": model_type,
|
| 87 |
-
"likes": model_info.likes,
|
| 88 |
-
"params": model_size,
|
| 89 |
-
"license": license,
|
| 90 |
-
"private": False,
|
| 91 |
-
}
|
| 92 |
-
|
| 93 |
# Check for duplicate submission
|
| 94 |
if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
|
| 95 |
return styled_warning("This model has been already submitted.")
|
| 96 |
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
-
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
API.upload_file(
|
| 107 |
-
path_or_fileobj=
|
| 108 |
-
path_in_repo=
|
| 109 |
-
repo_id=
|
| 110 |
repo_type="dataset",
|
| 111 |
-
commit_message=f"Add {model}
|
| 112 |
)
|
| 113 |
|
| 114 |
-
# Remove the local file
|
| 115 |
-
os.remove(
|
| 116 |
|
| 117 |
-
return styled_message(
|
| 118 |
-
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
|
| 119 |
-
)
|
|
|
|
| 2 |
import os
|
| 3 |
from datetime import datetime, timezone
|
| 4 |
|
| 5 |
+
import torch
|
| 6 |
+
import pandas as pd
|
| 7 |
+
import numpy as np
|
| 8 |
+
from datasets import load_dataset
|
| 9 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 10 |
+
from langchain.prompts import PromptTemplate
|
| 11 |
+
|
| 12 |
from src.display.formatting import styled_error, styled_message, styled_warning
|
| 13 |
+
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO, EVAL_RESULTS_PATH, RESULTS_REPO
|
| 14 |
from src.submission.check_validity import (
|
| 15 |
already_submitted_models,
|
| 16 |
check_model_card,
|
|
|
|
| 21 |
REQUESTED_MODELS = None
|
| 22 |
USERS_TO_SUBMISSION_DATES = None
|
| 23 |
|
| 24 |
+
def get_top_prediction(text, tokenizer, model):
|
| 25 |
+
inputs = tokenizer(text, return_tensors='pt')
|
| 26 |
+
if torch.cuda.is_available():
|
| 27 |
+
model = model.cuda()
|
| 28 |
+
inputs = {k: v.cuda() for k, v in inputs.items()}
|
| 29 |
+
|
| 30 |
+
with torch.no_grad():
|
| 31 |
+
outputs = model(**inputs)
|
| 32 |
+
logits = outputs.logits[0, -1]
|
| 33 |
+
|
| 34 |
+
options = [' A', ' B', ' C', ' D']
|
| 35 |
+
option_logits = []
|
| 36 |
+
for option in options:
|
| 37 |
+
option_id = tokenizer(option).input_ids[-1]
|
| 38 |
+
option_logit = logits[option_id]
|
| 39 |
+
option_logits.append((option_logit.item(), option.strip()))
|
| 40 |
+
|
| 41 |
+
# Get the option with the highest logit
|
| 42 |
+
top_option = max(option_logits, key=lambda x: x[0])[1]
|
| 43 |
+
return top_option
|
| 44 |
+
|
| 45 |
+
def evaluate_model_accuracy(model_name, num_examples):
|
| 46 |
+
try:
|
| 47 |
+
# Load the model and tokenizer
|
| 48 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 49 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 50 |
+
|
| 51 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 52 |
+
model_name,
|
| 53 |
+
trust_remote_code=True
|
| 54 |
+
)
|
| 55 |
+
if torch.cuda.is_available():
|
| 56 |
+
model = model.cuda() # Move model to GPU if available
|
| 57 |
+
|
| 58 |
+
# Load your dataset
|
| 59 |
+
dataset = load_dataset("Omartificial-Intelligence-Space/Arabic_Openai_MMMLU")
|
| 60 |
+
dataset = dataset['test']
|
| 61 |
+
|
| 62 |
+
# Convert the dataset to a pandas DataFrame for easier manipulation
|
| 63 |
+
df_dataset = dataset.to_pandas()
|
| 64 |
+
|
| 65 |
+
# Get list of unique subjects
|
| 66 |
+
subjects = df_dataset['Subject'].unique()
|
| 67 |
+
|
| 68 |
+
# Define prompt template
|
| 69 |
+
template = """Answer the following multiple choice question by giving the most appropriate response. Answer should be one among [A, B, C, D].
|
| 70 |
+
|
| 71 |
+
Question: {Question}
|
| 72 |
+
A) {A}
|
| 73 |
+
B) {B}
|
| 74 |
+
C) {C}
|
| 75 |
+
D) {D}
|
| 76 |
+
|
| 77 |
+
Answer:"""
|
| 78 |
+
|
| 79 |
+
prompt_template = PromptTemplate(template=template, input_variables=['Question', 'A', 'B', 'C', 'D'])
|
| 80 |
+
|
| 81 |
+
# Initialize counters and results
|
| 82 |
+
overall_correct_predictions = 0
|
| 83 |
+
overall_total_questions = 0
|
| 84 |
+
per_subject_results = []
|
| 85 |
+
detailed_results = []
|
| 86 |
+
|
| 87 |
+
for subject in subjects:
|
| 88 |
+
# Filter dataset for the current subject
|
| 89 |
+
subject_df = df_dataset[df_dataset['Subject'] == subject]
|
| 90 |
+
|
| 91 |
+
# Select up to num_examples questions
|
| 92 |
+
subject_df = subject_df.sample(n=min(num_examples, len(subject_df)), random_state=42)
|
| 93 |
+
|
| 94 |
+
# Initialize counters for this subject
|
| 95 |
+
correct_predictions = 0
|
| 96 |
+
total_questions = 0
|
| 97 |
+
|
| 98 |
+
for idx, data in subject_df.iterrows():
|
| 99 |
+
# Prepare text input
|
| 100 |
+
text = prompt_template.format(
|
| 101 |
+
Question=data['Question'],
|
| 102 |
+
A=data['A'],
|
| 103 |
+
B=data['B'],
|
| 104 |
+
C=data['C'],
|
| 105 |
+
D=data['D']
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
# Get the top prediction
|
| 109 |
+
top_prediction = get_top_prediction(text, tokenizer, model)
|
| 110 |
+
is_correct = (top_prediction == data['Answer'])
|
| 111 |
+
correct_predictions += int(is_correct)
|
| 112 |
+
total_questions += 1
|
| 113 |
+
overall_correct_predictions += int(is_correct)
|
| 114 |
+
overall_total_questions +=1
|
| 115 |
+
|
| 116 |
+
detailed_results.append({
|
| 117 |
+
'Subject': subject,
|
| 118 |
+
'Question': data['Question'],
|
| 119 |
+
'Answer': data['Answer'],
|
| 120 |
+
'Prediction': top_prediction,
|
| 121 |
+
'Correct': is_correct
|
| 122 |
+
})
|
| 123 |
+
|
| 124 |
+
# Compute accuracy for this subject
|
| 125 |
+
subject_accuracy = correct_predictions / total_questions if total_questions > 0 else 0
|
| 126 |
+
|
| 127 |
+
per_subject_results.append({
|
| 128 |
+
'Subject': subject,
|
| 129 |
+
'Total Score': correct_predictions,
|
| 130 |
+
'Total Questions': total_questions,
|
| 131 |
+
'Accuracy (%)': subject_accuracy * 100
|
| 132 |
+
})
|
| 133 |
+
|
| 134 |
+
# Compute overall accuracy
|
| 135 |
+
overall_accuracy = overall_correct_predictions / overall_total_questions if overall_total_questions > 0 else 0
|
| 136 |
+
|
| 137 |
+
# Convert per_subject_results to DataFrame
|
| 138 |
+
df_per_subject = pd.DataFrame(per_subject_results)
|
| 139 |
+
|
| 140 |
+
# Convert detailed_results to DataFrame
|
| 141 |
+
df_detailed_results = pd.DataFrame(detailed_results)
|
| 142 |
+
|
| 143 |
+
return overall_accuracy, df_per_subject, df_detailed_results
|
| 144 |
+
|
| 145 |
+
except Exception as e:
|
| 146 |
+
return f"Error: {str(e)}", pd.DataFrame(), pd.DataFrame()
|
| 147 |
+
|
| 148 |
def add_new_eval(
|
| 149 |
model: str,
|
| 150 |
base_model: str,
|
|
|
|
| 152 |
precision: str,
|
| 153 |
weight_type: str,
|
| 154 |
model_type: str,
|
| 155 |
+
num_examples: int # New parameter
|
| 156 |
):
|
| 157 |
global REQUESTED_MODELS
|
| 158 |
global USERS_TO_SUBMISSION_DATES
|
|
|
|
| 204 |
if not modelcard_OK:
|
| 205 |
return styled_error(error_msg)
|
| 206 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
# Check for duplicate submission
|
| 208 |
if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
|
| 209 |
return styled_warning("This model has been already submitted.")
|
| 210 |
|
| 211 |
+
# Now, perform the evaluation
|
| 212 |
+
try:
|
| 213 |
+
overall_accuracy, df_per_subject, df_detailed_results = evaluate_model_accuracy(model, int(num_examples))
|
| 214 |
+
if isinstance(overall_accuracy, str) and overall_accuracy.startswith("Error"):
|
| 215 |
+
return styled_error(overall_accuracy)
|
| 216 |
+
except Exception as e:
|
| 217 |
+
return styled_error(f"An error occurred during evaluation: {str(e)}")
|
| 218 |
|
| 219 |
+
# Prepare results for storage
|
| 220 |
+
results_dict = {
|
| 221 |
+
"config": {
|
| 222 |
+
"model_name": model,
|
| 223 |
+
"model_sha": revision,
|
| 224 |
+
"model_dtype": precision,
|
| 225 |
+
"submitted_time": current_time,
|
| 226 |
+
"model_type": model_type,
|
| 227 |
+
"weight_type": weight_type,
|
| 228 |
+
"license": license,
|
| 229 |
+
"likes": model_info.likes,
|
| 230 |
+
"params": model_size,
|
| 231 |
+
"still_on_hub": True,
|
| 232 |
+
"precision": precision,
|
| 233 |
+
},
|
| 234 |
+
"results": {
|
| 235 |
+
"average": overall_accuracy * 100,
|
| 236 |
+
},
|
| 237 |
+
}
|
| 238 |
+
|
| 239 |
+
# Include per-subject accuracies
|
| 240 |
+
for idx, row in df_per_subject.iterrows():
|
| 241 |
+
subject_name = row['Subject']
|
| 242 |
+
accuracy = row['Accuracy (%)']
|
| 243 |
+
results_dict['results'][subject_name] = accuracy
|
| 244 |
|
| 245 |
+
# Save results to a JSON file
|
| 246 |
+
results_file_path = f"{EVAL_RESULTS_PATH}/{model.replace('/', '_')}_results.json"
|
| 247 |
+
with open(results_file_path, "w") as f:
|
| 248 |
+
json.dump(results_dict, f)
|
| 249 |
+
|
| 250 |
+
# Upload the results file
|
| 251 |
API.upload_file(
|
| 252 |
+
path_or_fileobj=results_file_path,
|
| 253 |
+
path_in_repo=results_file_path.split(f"{EVAL_RESULTS_PATH}/")[1],
|
| 254 |
+
repo_id=RESULTS_REPO,
|
| 255 |
repo_type="dataset",
|
| 256 |
+
commit_message=f"Add results for {model}"
|
| 257 |
)
|
| 258 |
|
| 259 |
+
# Remove the local results file
|
| 260 |
+
os.remove(results_file_path)
|
| 261 |
|
| 262 |
+
return styled_message("Your model has been evaluated and the results are now on the leaderboard!")
|
|
|
|
|
|