Update app.py
Browse files
app.py
CHANGED
|
@@ -1,513 +1,35 @@
|
|
| 1 |
-
import types
|
| 2 |
-
import random
|
| 3 |
-
import spaces
|
| 4 |
-
import logging
|
| 5 |
import os
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
from diffusers import AutoModel
|
| 15 |
-
import gradio as gr
|
| 16 |
-
import tempfile
|
| 17 |
-
from huggingface_hub import hf_hub_download
|
| 18 |
-
|
| 19 |
-
from src.pipeline_wan_nag import NAGWanPipeline
|
| 20 |
-
from src.transformer_wan_nag import NagWanTransformer3DModel
|
| 21 |
-
|
| 22 |
-
# MMAudio imports
|
| 23 |
-
try:
|
| 24 |
-
import mmaudio
|
| 25 |
-
except ImportError:
|
| 26 |
-
os.system("pip install -e .")
|
| 27 |
-
import mmaudio
|
| 28 |
-
|
| 29 |
-
from mmaudio.eval_utils import (ModelConfig, all_model_cfg, generate as mmaudio_generate,
|
| 30 |
-
load_video, make_video, setup_eval_logging)
|
| 31 |
-
from mmaudio.model.flow_matching import FlowMatching
|
| 32 |
-
from mmaudio.model.networks import MMAudio, get_my_mmaudio
|
| 33 |
-
from mmaudio.model.sequence_config import SequenceConfig
|
| 34 |
-
from mmaudio.model.utils.features_utils import FeaturesUtils
|
| 35 |
-
|
| 36 |
-
# NAG Video Settings
|
| 37 |
-
MOD_VALUE = 32
|
| 38 |
-
DEFAULT_DURATION_SECONDS = 4
|
| 39 |
-
DEFAULT_STEPS = 4
|
| 40 |
-
DEFAULT_SEED = 2025
|
| 41 |
-
DEFAULT_H_SLIDER_VALUE = 480
|
| 42 |
-
DEFAULT_W_SLIDER_VALUE = 832
|
| 43 |
-
NEW_FORMULA_MAX_AREA = 480.0 * 832.0
|
| 44 |
-
|
| 45 |
-
SLIDER_MIN_H, SLIDER_MAX_H = 128, 896
|
| 46 |
-
SLIDER_MIN_W, SLIDER_MAX_W = 128, 896
|
| 47 |
-
MAX_SEED = np.iinfo(np.int32).max
|
| 48 |
-
|
| 49 |
-
FIXED_FPS = 16
|
| 50 |
-
MIN_FRAMES_MODEL = 8
|
| 51 |
-
MAX_FRAMES_MODEL = 129
|
| 52 |
-
|
| 53 |
-
DEFAULT_NAG_NEGATIVE_PROMPT = "Static, motionless, still, ugly, bad quality, worst quality, poorly drawn, low resolution, blurry, lack of details"
|
| 54 |
-
DEFAULT_AUDIO_NEGATIVE_PROMPT = "music"
|
| 55 |
-
|
| 56 |
-
# NAG Model Settings
|
| 57 |
-
MODEL_ID = "Wan-AI/Wan2.1-T2V-14B-Diffusers"
|
| 58 |
-
SUB_MODEL_ID = "vrgamedevgirl84/Wan14BT2VFusioniX"
|
| 59 |
-
SUB_MODEL_FILENAME = "Wan14BT2VFusioniX_fp16_.safetensors"
|
| 60 |
-
LORA_REPO_ID = "Kijai/WanVideo_comfy"
|
| 61 |
-
LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors"
|
| 62 |
-
|
| 63 |
-
# MMAudio Settings
|
| 64 |
-
torch.backends.cuda.matmul.allow_tf32 = True
|
| 65 |
-
torch.backends.cudnn.allow_tf32 = True
|
| 66 |
-
log = logging.getLogger()
|
| 67 |
-
device = 'cuda'
|
| 68 |
-
dtype = torch.bfloat16
|
| 69 |
-
audio_model_config: ModelConfig = all_model_cfg['large_44k_v2']
|
| 70 |
-
audio_model_config.download_if_needed()
|
| 71 |
-
setup_eval_logging()
|
| 72 |
-
|
| 73 |
-
# Initialize NAG Video Model
|
| 74 |
-
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
|
| 75 |
-
wan_path = hf_hub_download(repo_id=SUB_MODEL_ID, filename=SUB_MODEL_FILENAME)
|
| 76 |
-
transformer = NagWanTransformer3DModel.from_single_file(wan_path, torch_dtype=torch.bfloat16)
|
| 77 |
-
pipe = NAGWanPipeline.from_pretrained(
|
| 78 |
-
MODEL_ID, vae=vae, transformer=transformer, torch_dtype=torch.bfloat16
|
| 79 |
-
)
|
| 80 |
-
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=5.0)
|
| 81 |
-
pipe.to("cuda")
|
| 82 |
-
|
| 83 |
-
pipe.transformer.__class__.attn_processors = NagWanTransformer3DModel.attn_processors
|
| 84 |
-
pipe.transformer.__class__.set_attn_processor = NagWanTransformer3DModel.set_attn_processor
|
| 85 |
-
pipe.transformer.__class__.forward = NagWanTransformer3DModel.forward
|
| 86 |
-
|
| 87 |
-
# Initialize MMAudio Model
|
| 88 |
-
def get_mmaudio_model() -> tuple[MMAudio, FeaturesUtils, SequenceConfig]:
|
| 89 |
-
seq_cfg = audio_model_config.seq_cfg
|
| 90 |
-
|
| 91 |
-
net: MMAudio = get_my_mmaudio(audio_model_config.model_name).to(device, dtype).eval()
|
| 92 |
-
net.load_weights(torch.load(audio_model_config.model_path, map_location=device, weights_only=True))
|
| 93 |
-
log.info(f'Loaded MMAudio weights from {audio_model_config.model_path}')
|
| 94 |
-
|
| 95 |
-
feature_utils = FeaturesUtils(tod_vae_ckpt=audio_model_config.vae_path,
|
| 96 |
-
synchformer_ckpt=audio_model_config.synchformer_ckpt,
|
| 97 |
-
enable_conditions=True,
|
| 98 |
-
mode=audio_model_config.mode,
|
| 99 |
-
bigvgan_vocoder_ckpt=audio_model_config.bigvgan_16k_path,
|
| 100 |
-
need_vae_encoder=False)
|
| 101 |
-
feature_utils = feature_utils.to(device, dtype).eval()
|
| 102 |
-
|
| 103 |
-
return net, feature_utils, seq_cfg
|
| 104 |
-
|
| 105 |
-
audio_net, audio_feature_utils, audio_seq_cfg = get_mmaudio_model()
|
| 106 |
-
|
| 107 |
-
# Audio generation function
|
| 108 |
-
@torch.inference_mode()
|
| 109 |
-
def add_audio_to_video(video_path, prompt, audio_negative_prompt, audio_steps, audio_cfg_strength, duration):
|
| 110 |
-
"""Generate and add audio to video using MMAudio"""
|
| 111 |
-
rng = torch.Generator(device=device)
|
| 112 |
-
rng.seed() # Random seed for audio
|
| 113 |
-
fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=audio_steps)
|
| 114 |
-
|
| 115 |
-
video_info = load_video(video_path, duration)
|
| 116 |
-
clip_frames = video_info.clip_frames
|
| 117 |
-
sync_frames = video_info.sync_frames
|
| 118 |
-
duration = video_info.duration_sec
|
| 119 |
-
clip_frames = clip_frames.unsqueeze(0)
|
| 120 |
-
sync_frames = sync_frames.unsqueeze(0)
|
| 121 |
-
audio_seq_cfg.duration = duration
|
| 122 |
-
audio_net.update_seq_lengths(audio_seq_cfg.latent_seq_len, audio_seq_cfg.clip_seq_len, audio_seq_cfg.sync_seq_len)
|
| 123 |
-
|
| 124 |
-
audios = mmaudio_generate(clip_frames,
|
| 125 |
-
sync_frames, [prompt],
|
| 126 |
-
negative_text=[audio_negative_prompt],
|
| 127 |
-
feature_utils=audio_feature_utils,
|
| 128 |
-
net=audio_net,
|
| 129 |
-
fm=fm,
|
| 130 |
-
rng=rng,
|
| 131 |
-
cfg_strength=audio_cfg_strength)
|
| 132 |
-
audio = audios.float().cpu()[0]
|
| 133 |
-
|
| 134 |
-
# Create video with audio
|
| 135 |
-
video_with_audio_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
|
| 136 |
-
make_video(video_info, video_with_audio_path, audio, sampling_rate=audio_seq_cfg.sampling_rate)
|
| 137 |
-
|
| 138 |
-
return video_with_audio_path
|
| 139 |
-
|
| 140 |
-
# Combined generation function
|
| 141 |
-
def get_duration(prompt, nag_negative_prompt, nag_scale, height, width, duration_seconds,
|
| 142 |
-
steps, seed, randomize_seed, enable_audio, audio_negative_prompt,
|
| 143 |
-
audio_steps, audio_cfg_strength):
|
| 144 |
-
# Calculate total duration including audio processing if enabled
|
| 145 |
-
video_duration = int(duration_seconds) * int(steps) * 2.25 + 5
|
| 146 |
-
audio_duration = 30 if enable_audio else 0 # Additional time for audio processing
|
| 147 |
-
return video_duration + audio_duration
|
| 148 |
-
|
| 149 |
-
@spaces.GPU(duration=get_duration)
|
| 150 |
-
def generate_video_with_audio(
|
| 151 |
-
prompt,
|
| 152 |
-
nag_negative_prompt, nag_scale,
|
| 153 |
-
height=DEFAULT_H_SLIDER_VALUE, width=DEFAULT_W_SLIDER_VALUE, duration_seconds=DEFAULT_DURATION_SECONDS,
|
| 154 |
-
steps=DEFAULT_STEPS,
|
| 155 |
-
seed=DEFAULT_SEED, randomize_seed=False,
|
| 156 |
-
enable_audio=True, audio_negative_prompt=DEFAULT_AUDIO_NEGATIVE_PROMPT,
|
| 157 |
-
audio_steps=25, audio_cfg_strength=4.5,
|
| 158 |
-
):
|
| 159 |
-
# Generate video first
|
| 160 |
-
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
|
| 161 |
-
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
|
| 162 |
-
|
| 163 |
-
num_frames = np.clip(int(round(int(duration_seconds) * FIXED_FPS) + 1), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
|
| 164 |
-
|
| 165 |
-
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
|
| 166 |
-
|
| 167 |
-
with torch.inference_mode():
|
| 168 |
-
nag_output_frames_list = pipe(
|
| 169 |
-
prompt=prompt,
|
| 170 |
-
nag_negative_prompt=nag_negative_prompt,
|
| 171 |
-
nag_scale=nag_scale,
|
| 172 |
-
nag_tau=3.5,
|
| 173 |
-
nag_alpha=0.5,
|
| 174 |
-
height=target_h, width=target_w, num_frames=num_frames,
|
| 175 |
-
guidance_scale=0.,
|
| 176 |
-
num_inference_steps=int(steps),
|
| 177 |
-
generator=torch.Generator(device="cuda").manual_seed(current_seed)
|
| 178 |
-
).frames[0]
|
| 179 |
-
|
| 180 |
-
# Save initial video without audio
|
| 181 |
-
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
|
| 182 |
-
temp_video_path = tmpfile.name
|
| 183 |
-
export_to_video(nag_output_frames_list, temp_video_path, fps=FIXED_FPS)
|
| 184 |
-
|
| 185 |
-
# Add audio if enabled
|
| 186 |
-
if enable_audio:
|
| 187 |
-
try:
|
| 188 |
-
final_video_path = add_audio_to_video(
|
| 189 |
-
temp_video_path,
|
| 190 |
-
prompt, # Use the same prompt for audio generation
|
| 191 |
-
audio_negative_prompt,
|
| 192 |
-
audio_steps,
|
| 193 |
-
audio_cfg_strength,
|
| 194 |
-
duration_seconds
|
| 195 |
-
)
|
| 196 |
-
# Clean up temp video
|
| 197 |
-
if os.path.exists(temp_video_path):
|
| 198 |
-
os.remove(temp_video_path)
|
| 199 |
-
except Exception as e:
|
| 200 |
-
log.error(f"Audio generation failed: {e}")
|
| 201 |
-
final_video_path = temp_video_path
|
| 202 |
-
else:
|
| 203 |
-
final_video_path = temp_video_path
|
| 204 |
-
|
| 205 |
-
return final_video_path, current_seed
|
| 206 |
-
|
| 207 |
-
# Example generation function
|
| 208 |
-
def generate_with_example(prompt, nag_negative_prompt, nag_scale):
|
| 209 |
-
video_path, seed = generate_video_with_audio(
|
| 210 |
-
prompt=prompt,
|
| 211 |
-
nag_negative_prompt=nag_negative_prompt, nag_scale=nag_scale,
|
| 212 |
-
height=DEFAULT_H_SLIDER_VALUE, width=DEFAULT_W_SLIDER_VALUE,
|
| 213 |
-
duration_seconds=DEFAULT_DURATION_SECONDS,
|
| 214 |
-
steps=DEFAULT_STEPS,
|
| 215 |
-
seed=DEFAULT_SEED, randomize_seed=False,
|
| 216 |
-
enable_audio=True, audio_negative_prompt=DEFAULT_AUDIO_NEGATIVE_PROMPT,
|
| 217 |
-
audio_steps=25, audio_cfg_strength=4.5,
|
| 218 |
-
)
|
| 219 |
-
return video_path, \
|
| 220 |
-
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE, \
|
| 221 |
-
DEFAULT_DURATION_SECONDS, DEFAULT_STEPS, seed, \
|
| 222 |
-
True, DEFAULT_AUDIO_NEGATIVE_PROMPT, 25, 4.5
|
| 223 |
-
|
| 224 |
-
# Examples with audio descriptions
|
| 225 |
-
examples = [
|
| 226 |
-
["Midnight highway outside a neon-lit city. A black 1973 Porsche 911 Carrera RS speeds at 120 km/h. Inside, a stylish singer-guitarist sings while driving, vintage sunburst guitar on the passenger seat. Sodium streetlights streak over the hood; RGB panels shift magenta to blue on the driver. Camera: drone dive, Russian-arm low wheel shot, interior gimbal, FPV barrel roll, overhead spiral. Neo-noir palette, rain-slick asphalt reflections, roaring flat-six engine blended with live guitar.", DEFAULT_NAG_NEGATIVE_PROMPT, 11],
|
| 227 |
-
["Arena rock concert packed with 20 000 fans. A flamboyant lead guitarist in leather jacket and mirrored aviators shreds a cherry-red Flying V on a thrust stage. Pyro flames shoot up on every downbeat, CO₂ jets burst behind. Moving-head spotlights swirl teal and amber, follow-spots rim-light the guitarist’s hair. Steadicam 360-orbit, crane shot rising over crowd, ultra-slow-motion pick attack at 1 000 fps. Film-grain teal-orange grade, thunderous crowd roar mixes with screaming guitar solo.", DEFAULT_NAG_NEGATIVE_PROMPT, 11],
|
| 228 |
-
["Golden-hour countryside road winding through rolling wheat fields. A man and woman ride a vintage café-racer motorcycle, hair and scarf fluttering in the warm breeze. Drone chase shot reveals endless patchwork farmland; low slider along rear wheel captures dust trail. Sun-flare back-lights the riders, lens blooms on highlights. Soft acoustic rock underscore; engine rumble mixed at –8 dB. Warm pastel color grade, gentle film-grain for nostalgic vibe.", DEFAULT_NAG_NEGATIVE_PROMPT, 11],
|
| 229 |
-
]
|
| 230 |
-
|
| 231 |
-
# CSS styling
|
| 232 |
-
css = """
|
| 233 |
-
.container {
|
| 234 |
-
max-width: 1400px;
|
| 235 |
-
margin: auto;
|
| 236 |
-
padding: 20px;
|
| 237 |
-
}
|
| 238 |
-
.main-title {
|
| 239 |
-
text-align: center;
|
| 240 |
-
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 241 |
-
-webkit-background-clip: text;
|
| 242 |
-
-webkit-text-fill-color: transparent;
|
| 243 |
-
font-size: 2.5em;
|
| 244 |
-
font-weight: bold;
|
| 245 |
-
margin-bottom: 10px;
|
| 246 |
-
}
|
| 247 |
-
.subtitle {
|
| 248 |
-
text-align: center;
|
| 249 |
-
color: #6b7280;
|
| 250 |
-
margin-bottom: 30px;
|
| 251 |
-
}
|
| 252 |
-
.prompt-container {
|
| 253 |
-
background: linear-gradient(135deg, #f3f4f6 0%, #e5e7eb 100%);
|
| 254 |
-
border-radius: 15px;
|
| 255 |
-
padding: 20px;
|
| 256 |
-
margin-bottom: 20px;
|
| 257 |
-
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
| 258 |
-
}
|
| 259 |
-
.generate-btn {
|
| 260 |
-
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 261 |
-
color: white;
|
| 262 |
-
font-size: 1.2em;
|
| 263 |
-
font-weight: bold;
|
| 264 |
-
padding: 15px 30px;
|
| 265 |
-
border-radius: 10px;
|
| 266 |
-
border: none;
|
| 267 |
-
cursor: pointer;
|
| 268 |
-
transition: all 0.3s ease;
|
| 269 |
-
width: 100%;
|
| 270 |
-
margin-top: 20px;
|
| 271 |
-
}
|
| 272 |
-
.generate-btn:hover {
|
| 273 |
-
transform: translateY(-2px);
|
| 274 |
-
box-shadow: 0 6px 20px rgba(102, 126, 234, 0.4);
|
| 275 |
-
}
|
| 276 |
-
.video-output {
|
| 277 |
-
border-radius: 15px;
|
| 278 |
-
overflow: hidden;
|
| 279 |
-
box-shadow: 0 10px 30px rgba(0, 0, 0, 0.2);
|
| 280 |
-
background: #1a1a1a;
|
| 281 |
-
padding: 10px;
|
| 282 |
-
}
|
| 283 |
-
.settings-panel {
|
| 284 |
-
background: #f9fafb;
|
| 285 |
-
border-radius: 15px;
|
| 286 |
-
padding: 20px;
|
| 287 |
-
box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05);
|
| 288 |
-
}
|
| 289 |
-
.slider-container {
|
| 290 |
-
background: white;
|
| 291 |
-
padding: 15px;
|
| 292 |
-
border-radius: 10px;
|
| 293 |
-
margin-bottom: 15px;
|
| 294 |
-
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
|
| 295 |
-
}
|
| 296 |
-
.info-box {
|
| 297 |
-
background: linear-gradient(135deg, #e0e7ff 0%, #c7d2fe 100%);
|
| 298 |
-
border-radius: 10px;
|
| 299 |
-
padding: 15px;
|
| 300 |
-
margin: 10px 0;
|
| 301 |
-
border-left: 4px solid #667eea;
|
| 302 |
-
}
|
| 303 |
-
.audio-settings {
|
| 304 |
-
background: linear-gradient(135deg, #fef3c7 0%, #fde68a 100%);
|
| 305 |
-
border-radius: 10px;
|
| 306 |
-
padding: 15px;
|
| 307 |
-
margin-top: 10px;
|
| 308 |
-
border-left: 4px solid #f59e0b;
|
| 309 |
-
}
|
| 310 |
-
"""
|
| 311 |
-
|
| 312 |
-
# Gradio interface
|
| 313 |
-
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
| 314 |
-
with gr.Column(elem_classes="container"):
|
| 315 |
-
gr.HTML("""
|
| 316 |
-
<h1 class="main-title">🎬 VEO3 Free</h1>
|
| 317 |
-
<p class="subtitle">Wan2.1-T2V-14B + Fast 4-step with NAG + Automatic Audio Generation</p>
|
| 318 |
-
""")
|
| 319 |
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
style="display:flex; gap:8px; flex-wrap:wrap; justify-content:center; align-items:center;">
|
| 324 |
-
|
| 325 |
-
<a href="https://huggingface.co/spaces/ginigen/VEO3-Free" target="_blank">
|
| 326 |
-
<img src="https://img.shields.io/static/v1?label=Text%20to%20Video%2BAudio&message=VEO3%20free&color=%230000ff&labelColor=%23800080&logo=huggingface&logoColor=%23ffa500&style=for-the-badge" alt="badge">
|
| 327 |
-
</a>
|
| 328 |
-
<a href="https://huggingface.co/spaces/ginigen/VEO3-Free-mirror" target="_blank">
|
| 329 |
-
<img src="https://img.shields.io/static/v1?label=Text%20to%20Video%2BAudio&message=VEO3%20free%28mirror%29&color=%230000ff&labelColor=%23800080&logo=huggingface&logoColor=%23ffa500&style=for-the-badge" alt="badge">
|
| 330 |
-
</a>
|
| 331 |
-
<a href="https://huggingface.co/spaces/ginigen/VEO3-Directors" target="_blank">
|
| 332 |
-
<img src="https://img.shields.io/static/v1?label=DIRECTORS&message=VEO3&color=%23ffd700&labelColor=%23000080&logo=huggingface&logoColor=%23ffa500&style=for-the-badge" alt="badge">
|
| 333 |
-
</a>
|
| 334 |
-
<a href="https://discord.gg/openfreeai" target="_blank">
|
| 335 |
-
<img src="https://img.shields.io/static/v1?label=Discord&message=Openfree%20AI&color=%230000ff&labelColor=%23800080&logo=discord&logoColor=%23ffa500&style=for-the-badge" alt="badge">
|
| 336 |
-
</a>
|
| 337 |
-
</div>
|
| 338 |
-
""")
|
| 339 |
-
|
| 340 |
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
label="✨ Video Prompt (also used for audio generation)",
|
| 346 |
-
placeholder="Describe your video scene in detail...",
|
| 347 |
-
lines=3,
|
| 348 |
-
elem_classes="prompt-input"
|
| 349 |
-
)
|
| 350 |
-
|
| 351 |
-
with gr.Accordion("🎨 Advanced Video Settings", open=False):
|
| 352 |
-
nag_negative_prompt = gr.Textbox(
|
| 353 |
-
label="Video Negative Prompt",
|
| 354 |
-
value=DEFAULT_NAG_NEGATIVE_PROMPT,
|
| 355 |
-
lines=2,
|
| 356 |
-
)
|
| 357 |
-
nag_scale = gr.Slider(
|
| 358 |
-
label="NAG Scale",
|
| 359 |
-
minimum=1.0,
|
| 360 |
-
maximum=20.0,
|
| 361 |
-
step=0.25,
|
| 362 |
-
value=11.0,
|
| 363 |
-
info="Higher values = stronger guidance"
|
| 364 |
-
)
|
| 365 |
-
|
| 366 |
-
with gr.Group(elem_classes="settings-panel"):
|
| 367 |
-
gr.Markdown("### ⚙️ Video Settings")
|
| 368 |
-
|
| 369 |
-
with gr.Row():
|
| 370 |
-
duration_seconds_input = gr.Slider(
|
| 371 |
-
minimum=1,
|
| 372 |
-
maximum=8,
|
| 373 |
-
step=1,
|
| 374 |
-
value=DEFAULT_DURATION_SECONDS,
|
| 375 |
-
label="📱 Duration (seconds)",
|
| 376 |
-
elem_classes="slider-container"
|
| 377 |
-
)
|
| 378 |
-
steps_slider = gr.Slider(
|
| 379 |
-
minimum=1,
|
| 380 |
-
maximum=8,
|
| 381 |
-
step=1,
|
| 382 |
-
value=DEFAULT_STEPS,
|
| 383 |
-
label="🔄 Inference Steps",
|
| 384 |
-
elem_classes="slider-container"
|
| 385 |
-
)
|
| 386 |
-
|
| 387 |
-
with gr.Row():
|
| 388 |
-
height_input = gr.Slider(
|
| 389 |
-
minimum=SLIDER_MIN_H,
|
| 390 |
-
maximum=SLIDER_MAX_H,
|
| 391 |
-
step=MOD_VALUE,
|
| 392 |
-
value=DEFAULT_H_SLIDER_VALUE,
|
| 393 |
-
label=f"📐 Height (×{MOD_VALUE})",
|
| 394 |
-
elem_classes="slider-container"
|
| 395 |
-
)
|
| 396 |
-
width_input = gr.Slider(
|
| 397 |
-
minimum=SLIDER_MIN_W,
|
| 398 |
-
maximum=SLIDER_MAX_W,
|
| 399 |
-
step=MOD_VALUE,
|
| 400 |
-
value=DEFAULT_W_SLIDER_VALUE,
|
| 401 |
-
label=f"📐 Width (×{MOD_VALUE})",
|
| 402 |
-
elem_classes="slider-container"
|
| 403 |
-
)
|
| 404 |
-
|
| 405 |
-
with gr.Row():
|
| 406 |
-
seed_input = gr.Slider(
|
| 407 |
-
label="🌱 Seed",
|
| 408 |
-
minimum=0,
|
| 409 |
-
maximum=MAX_SEED,
|
| 410 |
-
step=1,
|
| 411 |
-
value=DEFAULT_SEED,
|
| 412 |
-
interactive=True
|
| 413 |
-
)
|
| 414 |
-
randomize_seed_checkbox = gr.Checkbox(
|
| 415 |
-
label="🎲 Random Seed",
|
| 416 |
-
value=True,
|
| 417 |
-
interactive=True
|
| 418 |
-
)
|
| 419 |
-
|
| 420 |
-
with gr.Group(elem_classes="audio-settings"):
|
| 421 |
-
gr.Markdown("### 🎵 Audio Generation Settings")
|
| 422 |
-
|
| 423 |
-
enable_audio = gr.Checkbox(
|
| 424 |
-
label="🔊 Enable Automatic Audio Generation",
|
| 425 |
-
value=True,
|
| 426 |
-
interactive=True
|
| 427 |
-
)
|
| 428 |
-
|
| 429 |
-
with gr.Column(visible=True) as audio_settings_group:
|
| 430 |
-
audio_negative_prompt = gr.Textbox(
|
| 431 |
-
label="Audio Negative Prompt",
|
| 432 |
-
value=DEFAULT_AUDIO_NEGATIVE_PROMPT,
|
| 433 |
-
placeholder="Elements to avoid in audio (e.g., music, speech)",
|
| 434 |
-
)
|
| 435 |
-
|
| 436 |
-
with gr.Row():
|
| 437 |
-
audio_steps = gr.Slider(
|
| 438 |
-
minimum=10,
|
| 439 |
-
maximum=50,
|
| 440 |
-
step=5,
|
| 441 |
-
value=25,
|
| 442 |
-
label="🎚️ Audio Steps",
|
| 443 |
-
info="More steps = better quality"
|
| 444 |
-
)
|
| 445 |
-
audio_cfg_strength = gr.Slider(
|
| 446 |
-
minimum=1.0,
|
| 447 |
-
maximum=10.0,
|
| 448 |
-
step=0.5,
|
| 449 |
-
value=4.5,
|
| 450 |
-
label="🎛️ Audio Guidance",
|
| 451 |
-
info="Strength of prompt guidance"
|
| 452 |
-
)
|
| 453 |
-
|
| 454 |
-
# Toggle audio settings visibility
|
| 455 |
-
enable_audio.change(
|
| 456 |
-
fn=lambda x: gr.update(visible=x),
|
| 457 |
-
inputs=[enable_audio],
|
| 458 |
-
outputs=[audio_settings_group]
|
| 459 |
-
)
|
| 460 |
-
|
| 461 |
-
generate_button = gr.Button(
|
| 462 |
-
"🎬 Generate Video with Audio",
|
| 463 |
-
variant="primary",
|
| 464 |
-
elem_classes="generate-btn"
|
| 465 |
-
)
|
| 466 |
-
|
| 467 |
-
with gr.Column(scale=1):
|
| 468 |
-
video_output = gr.Video(
|
| 469 |
-
label="Generated Video with Audio",
|
| 470 |
-
autoplay=True,
|
| 471 |
-
interactive=False,
|
| 472 |
-
elem_classes="video-output"
|
| 473 |
-
)
|
| 474 |
-
|
| 475 |
-
gr.HTML("""
|
| 476 |
-
<div style="text-align: center; margin-top: 20px; color: #6b7280;">
|
| 477 |
-
<p>💡 Tip: The same prompt is used for both video and audio generation!</p>
|
| 478 |
-
<p>🎧 Audio is automatically matched to the visual content</p>
|
| 479 |
-
</div>
|
| 480 |
-
""")
|
| 481 |
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
)
|
| 495 |
-
|
| 496 |
-
# Connect UI elements
|
| 497 |
-
ui_inputs = [
|
| 498 |
-
prompt,
|
| 499 |
-
nag_negative_prompt, nag_scale,
|
| 500 |
-
height_input, width_input, duration_seconds_input,
|
| 501 |
-
steps_slider,
|
| 502 |
-
seed_input, randomize_seed_checkbox,
|
| 503 |
-
enable_audio, audio_negative_prompt, audio_steps, audio_cfg_strength,
|
| 504 |
-
]
|
| 505 |
-
|
| 506 |
-
generate_button.click(
|
| 507 |
-
fn=generate_video_with_audio,
|
| 508 |
-
inputs=ui_inputs,
|
| 509 |
-
outputs=[video_output, seed_input],
|
| 510 |
-
)
|
| 511 |
|
| 512 |
if __name__ == "__main__":
|
| 513 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
import sys
|
| 3 |
+
import streamlit as st
|
| 4 |
+
from tempfile import NamedTemporaryFile
|
| 5 |
+
|
| 6 |
+
def main():
|
| 7 |
+
try:
|
| 8 |
+
# Get the code from secrets
|
| 9 |
+
code = os.environ.get("MAIN_CODE")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
if not code:
|
| 12 |
+
st.error("⚠️ The application code wasn't found in secrets. Please add the MAIN_CODE secret.")
|
| 13 |
+
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
+
# Create a temporary Python file
|
| 16 |
+
with NamedTemporaryFile(suffix='.py', delete=False, mode='w') as tmp:
|
| 17 |
+
tmp.write(code)
|
| 18 |
+
tmp_path = tmp.name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
# Execute the code
|
| 21 |
+
exec(compile(code, tmp_path, 'exec'), globals())
|
| 22 |
+
|
| 23 |
+
# Clean up the temporary file
|
| 24 |
+
try:
|
| 25 |
+
os.unlink(tmp_path)
|
| 26 |
+
except:
|
| 27 |
+
pass
|
| 28 |
+
|
| 29 |
+
except Exception as e:
|
| 30 |
+
st.error(f"⚠️ Error loading or executing the application: {str(e)}")
|
| 31 |
+
import traceback
|
| 32 |
+
st.code(traceback.format_exc())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
if __name__ == "__main__":
|
| 35 |
+
main()
|