Spaces:
Sleeping
Sleeping
File size: 2,412 Bytes
f1d966a f8ee76e b505f70 92868fb f1d966a f8ee76e b505f70 f8ee76e b505f70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
---
title: WER Evaluation Tool
emoji: 🎯
colorFrom: blue
colorTo: red
sdk: gradio
sdk_version: 5.16.0
app_file: app.py
pinned: false
---
# WER Evaluation Tool
This Gradio app provides a user-friendly interface for calculating Word Error Rate (WER) and related metrics between reference and hypothesis texts. It's particularly useful for evaluating speech recognition or machine translation outputs.
## Features
- Calculate WER, MER, WIL, and WIP metrics
- Text normalization options
- Custom word filtering
- Detailed error analysis
- Example inputs for testing
## How to Use
1. Enter or paste your reference text
2. Enter or paste your hypothesis text
3. Configure options (normalization, word filtering)
4. Click "Calculate WER" to see results
## Local Development
1. Clone the repository:
```bash
git clone https://github.com/yourusername/wer-evaluation-tool.git
cd wer-evaluation-tool
```
2. Create and activate a virtual environment using `uv`:
```bash
uv venv
source .venv/bin/activate # On Unix/macOS
# or
.venv\Scripts\activate # On Windows
```
3. Install dependencies:
```bash
uv pip install -r requirements.txt
```
4. Run the app locally:
```bash
uv run python app_gradio.py
```
## Installation
You can install the package directly from PyPI:
```bash
uv pip install wer-evaluation-tool
```
## Testing
Run the test suite using pytest:
```bash
uv run pytest tests/
```
## Contributing
1. Fork the repository
2. Create a new branch (`git checkout -b feature/improvement`)
3. Make your changes
4. Run tests to ensure everything works
5. Commit your changes (`git commit -am 'Add new feature'`)
6. Push to the branch (`git push origin feature/improvement`)
7. Create a Pull Request
## License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
## Acknowledgments
- Thanks to all contributors who have helped with the development
- Inspired by the need for better speech recognition evaluation tools
- Built with [Gradio](https://gradio.app/)
## Contact
For questions or feedback, please:
- Open an issue in the GitHub repository
- Contact the maintainers at [email/contact information]
## Citation
If you use this tool in your research, please cite:
```bibtex
@software{wer_evaluation_tool,
title = {WER Evaluation Tool},
author = {Your Name},
year = {2024},
url = {https://github.com/yourusername/wer-evaluation-tool}
}
``` |