Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,85 +1,135 @@
|
|
1 |
-
#
|
2 |
-
#
|
3 |
-
#
|
4 |
-
#
|
5 |
-
#
|
6 |
-
#
|
7 |
-
#
|
8 |
-
#
|
9 |
-
#
|
10 |
-
#
|
11 |
-
#
|
12 |
-
#
|
13 |
-
#
|
14 |
-
|
15 |
-
#
|
16 |
-
#
|
17 |
-
#
|
18 |
-
#
|
19 |
-
#
|
20 |
-
#
|
21 |
-
#
|
22 |
-
#
|
23 |
-
#
|
24 |
-
#
|
25 |
-
#
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
# import gradio as gr
|
30 |
-
# from
|
31 |
|
32 |
-
# # Load the
|
33 |
-
#
|
34 |
-
#
|
35 |
-
# )
|
36 |
-
# processor = AutoProcessor.from_pretrained("Qwen/QVQ-72B-Preview")
|
37 |
|
38 |
-
# #
|
39 |
# def process_image_and_question(image, question):
|
40 |
-
# if image is None or question
|
41 |
# return "Please provide both an image and a question."
|
42 |
-
|
43 |
-
# # Prepare the input message
|
44 |
-
# messages = [
|
45 |
-
# {
|
46 |
-
# "role": "system",
|
47 |
-
# "content": [
|
48 |
-
# {"type": "text", "text": "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step."}
|
49 |
-
# ],
|
50 |
-
# },
|
51 |
-
# {
|
52 |
-
# "role": "user",
|
53 |
-
# "content": [
|
54 |
-
# {"type": "image", "image": image},
|
55 |
-
# {"type": "text", "text": question},
|
56 |
-
# ],
|
57 |
-
# }
|
58 |
-
# ]
|
59 |
-
|
60 |
# # Process the inputs
|
61 |
-
#
|
62 |
-
|
63 |
-
|
64 |
-
# inputs = processor(
|
65 |
-
# text=[text],
|
66 |
-
# images=image_inputs,
|
67 |
-
# videos=video_inputs,
|
68 |
-
# padding=True,
|
69 |
-
# return_tensors="pt",
|
70 |
-
# )
|
71 |
-
# inputs = inputs.to("cuda")
|
72 |
-
|
73 |
# # Generate the output
|
74 |
-
#
|
75 |
-
#
|
76 |
-
# out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
77 |
-
# ]
|
78 |
-
# output_text = processor.batch_decode(
|
79 |
-
# generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
80 |
-
# )
|
81 |
|
82 |
-
# return
|
83 |
|
84 |
# # Define the Gradio interface
|
85 |
# with gr.Blocks() as demo:
|
@@ -103,53 +153,3 @@
|
|
103 |
|
104 |
# # Launch the interface
|
105 |
# demo.launch()
|
106 |
-
|
107 |
-
|
108 |
-
# ------------------------------------------------------------------------------------------------------------------------------------
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
import gradio as gr
|
113 |
-
from transformers import AutoProcessor, AutoModelForImageTextToText
|
114 |
-
|
115 |
-
# Load the processor and model
|
116 |
-
model_name = "Qwen/QVQ-72B-Preview"
|
117 |
-
processor = AutoProcessor.from_pretrained(model_name)
|
118 |
-
model = AutoModelForImageTextToText.from_pretrained(model_name)
|
119 |
-
|
120 |
-
# Define the prediction function
|
121 |
-
def process_image_and_question(image, question):
|
122 |
-
if image is None or not question:
|
123 |
-
return "Please provide both an image and a question."
|
124 |
-
|
125 |
-
# Process the inputs
|
126 |
-
inputs = processor(images=image, text=question, return_tensors="pt")
|
127 |
-
|
128 |
-
# Generate the output
|
129 |
-
outputs = model.generate(**inputs)
|
130 |
-
answer = processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
131 |
-
|
132 |
-
return answer
|
133 |
-
|
134 |
-
# Define the Gradio interface
|
135 |
-
with gr.Blocks() as demo:
|
136 |
-
gr.Markdown("# Image and Question Answering\nProvide an image (JPG/PNG) and a related question to get an answer.")
|
137 |
-
|
138 |
-
with gr.Row():
|
139 |
-
with gr.Column():
|
140 |
-
image_input = gr.Image(type="pil", label="Upload Image (JPG/PNG)")
|
141 |
-
question_input = gr.Textbox(label="Enter your question")
|
142 |
-
|
143 |
-
with gr.Column():
|
144 |
-
output_box = gr.Textbox(label="Result", interactive=False)
|
145 |
-
|
146 |
-
with gr.Row():
|
147 |
-
clear_button = gr.Button("Clear")
|
148 |
-
submit_button = gr.Button("Submit")
|
149 |
-
|
150 |
-
# Define button functionality
|
151 |
-
clear_button.click(lambda: (None, "", ""), inputs=[], outputs=[image_input, question_input, output_box])
|
152 |
-
submit_button.click(process_image_and_question, inputs=[image_input, question_input], outputs=output_box)
|
153 |
-
|
154 |
-
# Launch the interface
|
155 |
-
demo.launch()
|
|
|
1 |
+
# ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
2 |
+
#
|
3 |
+
# This space is created by SANJOG GHONGE for testing and learning purpose.
|
4 |
+
#
|
5 |
+
# If you want to remove this space or credits please contact me on my email id [[email protected]].
|
6 |
+
#
|
7 |
+
# Citation : @misc{qvq-72b-preview,
|
8 |
+
# title = {QVQ: To See the World with Wisdom},
|
9 |
+
# url = {https://qwenlm.github.io/blog/qvq-72b-preview/},
|
10 |
+
# author = {Qwen Team},
|
11 |
+
# month = {December},
|
12 |
+
# year = {2024}
|
13 |
+
# }
|
14 |
+
|
15 |
+
# @article{Qwen2VL,
|
16 |
+
# title={Qwen2-VL: Enhancing Vision-Language Model's Perception of the World at Any Resolution},
|
17 |
+
# author={Wang, Peng and Bai, Shuai and Tan, Sinan and Wang, Shijie and Fan, Zhihao and Bai,
|
18 |
+
# Jinze and Chen, Keqin and Liu, Xuejing and Wang, Jialin and Ge, Wenbin and Fan, Yang and Dang,
|
19 |
+
# Kai and Du, Mengfei and Ren, Xuancheng and Men, Rui and Liu, Dayiheng and Zhou, Chang and Zhou,
|
20 |
+
# Jingren and Lin, Junyang},
|
21 |
+
# journal={arXiv preprint arXiv:2409.12191},
|
22 |
+
# year={2024}
|
23 |
+
# }
|
24 |
+
#
|
25 |
+
# -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
26 |
+
|
27 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
|
28 |
+
from qwen_vl_utils import process_vision_info
|
29 |
+
import gradio as gr
|
30 |
+
from PIL import Image
|
31 |
+
|
32 |
+
# Load the model and processor
|
33 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
34 |
+
"Qwen/QVQ-72B-Preview", torch_dtype="auto", device_map="auto"
|
35 |
+
)
|
36 |
+
processor = AutoProcessor.from_pretrained("Qwen/QVQ-72B-Preview")
|
37 |
+
|
38 |
+
# Function to process the image and question
|
39 |
+
def process_image_and_question(image, question):
|
40 |
+
if image is None or question.strip() == "":
|
41 |
+
return "Please provide both an image and a question."
|
42 |
+
|
43 |
+
# Prepare the input message
|
44 |
+
messages = [
|
45 |
+
{
|
46 |
+
"role": "system",
|
47 |
+
"content": [
|
48 |
+
{"type": "text", "text": "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step."}
|
49 |
+
],
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"role": "user",
|
53 |
+
"content": [
|
54 |
+
{"type": "image", "image": image},
|
55 |
+
{"type": "text", "text": question},
|
56 |
+
],
|
57 |
+
}
|
58 |
+
]
|
59 |
+
|
60 |
+
# Process the inputs
|
61 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
62 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
63 |
+
|
64 |
+
inputs = processor(
|
65 |
+
text=[text],
|
66 |
+
images=image_inputs,
|
67 |
+
videos=video_inputs,
|
68 |
+
padding=True,
|
69 |
+
return_tensors="pt",
|
70 |
+
)
|
71 |
+
inputs = inputs.to("cuda")
|
72 |
+
|
73 |
+
# Generate the output
|
74 |
+
generated_ids = model.generate(**inputs, max_new_tokens=8192)
|
75 |
+
generated_ids_trimmed = [
|
76 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
77 |
+
]
|
78 |
+
output_text = processor.batch_decode(
|
79 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
80 |
+
)
|
81 |
+
|
82 |
+
return output_text[0] if output_text else "No output generated."
|
83 |
+
|
84 |
+
# Define the Gradio interface
|
85 |
+
with gr.Blocks() as demo:
|
86 |
+
gr.Markdown("# Sanjog Image and Question Answering\nProvide an image (JPG/PNG) and a related question to get an answer.")
|
87 |
+
|
88 |
+
with gr.Row():
|
89 |
+
with gr.Column():
|
90 |
+
image_input = gr.Image(type="pil", label="Upload Image (JPG/PNG)")
|
91 |
+
question_input = gr.Textbox(label="Enter your question")
|
92 |
+
|
93 |
+
with gr.Column():
|
94 |
+
output_box = gr.Textbox(label="Result", interactive=False)
|
95 |
+
|
96 |
+
with gr.Row():
|
97 |
+
clear_button = gr.Button("Clear")
|
98 |
+
submit_button = gr.Button("Submit")
|
99 |
+
|
100 |
+
# Define button functionality
|
101 |
+
clear_button.click(lambda: (None, "", ""), inputs=[], outputs=[image_input, question_input, output_box])
|
102 |
+
submit_button.click(process_image_and_question, inputs=[image_input, question_input], outputs=output_box)
|
103 |
+
|
104 |
+
# Launch the interface
|
105 |
+
demo.launch()
|
106 |
+
|
107 |
+
|
108 |
+
# ------------------------------------------------------------------------------------------------------------------------------------
|
109 |
+
|
110 |
+
|
111 |
+
|
112 |
# import gradio as gr
|
113 |
+
# from transformers import AutoProcessor, AutoModelForImageTextToText
|
114 |
|
115 |
+
# # Load the processor and model
|
116 |
+
# model_name = "Qwen/QVQ-72B-Preview"
|
117 |
+
# processor = AutoProcessor.from_pretrained(model_name)
|
118 |
+
# model = AutoModelForImageTextToText.from_pretrained(model_name)
|
|
|
119 |
|
120 |
+
# # Define the prediction function
|
121 |
# def process_image_and_question(image, question):
|
122 |
+
# if image is None or not question:
|
123 |
# return "Please provide both an image and a question."
|
124 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
# # Process the inputs
|
126 |
+
# inputs = processor(images=image, text=question, return_tensors="pt")
|
127 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
# # Generate the output
|
129 |
+
# outputs = model.generate(**inputs)
|
130 |
+
# answer = processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
+
# return answer
|
133 |
|
134 |
# # Define the Gradio interface
|
135 |
# with gr.Blocks() as demo:
|
|
|
153 |
|
154 |
# # Launch the interface
|
155 |
# demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|